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Abstract

This report describes the results of my internship at SRI International, under the supervision of Natarajan
Shankar.

The goal of that internship was to formally verify an idealized version of the PVS2C code generator, using
PVS. This included defining the semantics of the languages that were to be used, writing the code generator
itself, and proving its correctness. The idealized version compiles a first-order, call-by-value functional language
to an imperative language with primitives for reference counting.

In the following, we will successively present the different languages used throughout the proof, with their
formal semantics, how to compile from one language to the next, and the reasons why they are in bisimulation.
Then, we will highlight some parts of the PVS code that were written to prove the theorems mentioned.
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1 Introduction

Programs written in functional languages are easier to reason with than the corresponding imperative programs,
thanks to referential transparency and to the purity of functions. To efficiently implement a functional language
on a real-world machine, the most used way is to compile programs from this functional language to programs
in an imperative language. However, there are a couple challenges when compiling: indeed, as the evaluation
needs to be pure, array updates cannot always be done destructively, which would be unsound, and must
sometimes be done by copying the original array and updating the copy. Moreover, memory that is no longer
used must be freed to avoid cluttering the memory. Our objective is to prove the correctness of such a
transformation, that translates programs from a simple functional programming language FL to an imperative
language IL with primitives for reference-counting.

The functional language FL is a first-order language, where all programs are written in A-normal form [3].
It is simply typed, and is also a subset of the intermediate language used in the PVS2C code generator. Its
operational semantics is defined as reductions of terms within an evaluation context [1]. This semantics is
pure, and each time an array update is made, it copies the array and performs the update on the copy. The
translation is done is two steps, one which is a simple static analysis of the program to get a version in RL, an
annotated form of FL, that uses reference counting and makes destructive updates whenever possible. Once
this transformation is done, we make a second transformation to get a program in IL, which uses assignments
and a program counter, but behaves exactly as RL in terms of memory.

Although these proofs are operating on idealized versions of languages, their objective is to demonstrate
how they can be done, and how we can create similar proofs in other, more complex languages. The proofs
have moreover been designed so that more features can be added to the languages used with minimal impact
on the proofs.

We give below a brief overview of languages and of the code generator.
Consider the program swap which swaps two elements of an array.

swap(t, i, j)

= let a = t[i] in let b = t[j] in let t′ = t[i 7→ b] in t′[j 7→ a]

Although this definition could be simplified in most programming languages, it is not possible here, as we
ask that the program is in A-normal form. That is, each subexpression is bound to a variable, so that each
expression has only subexpressions that are variables. One of the main advantages of doing so is that is clears
any ambiguity on the evaluation order. Evaluation an expression e is done with respect to a stack S, binding
variables to values, and a store M, which maps references to arrays. For instance, if e is let x = y[i 7→
k] in x[i], and the stack S is (y 7→ r, i 7→ 2, k 7→ 5) with M = (r 7→ 〈1, 2, 3〉), e can be decomposed as a redex
y[i 7→ k] in a context let x = � in x[i].

The semantics is defined as a set of rewrite rules on redexes, and the property that it is context-preserving.
Thus, since we would have y[i 7→ k] → r′ with the store becoming (r 7→ 〈1, 2, 3〉, r′ 7→ 〈1, 2, 5〉), we have
e → let x = r′ in x[i] with the same new store. In our case, subsequent reductions would first reduce the
let expression so that e would become pop(x[i]) and S would be (x 7→ r′, y 7→ r, i 7→ 2, k 7→ 5). Here, pop
is used to keep track of the scope of the variable binding and removing the binding once the variable that is
being bound is no longer in scope. The next reductions would reduce e to pop(5), followed by 5 while the
binding of x is popped off the stack.

The reference-counting language RL behaves likewise, but additionally keeps track of a reference count for
each possible reference to the store. In order to do that, it marks the last live occurence of each variable,
so that it can free the binding and decrease the reference count at that point. For instance, our previous
expression would become let x = y[i 7→ k] in x[i]. Moreover, doing so facilitates destructive updates when
updating a reference whose reference count is only 1, and it is the last occurence of the variable being used.
Proving that the reference count is accurate is part of the proof of the bisimulation between FL and RL.

Finally, the last step transforms a program of RL into a program of IL, an imperative language. It has,
by design, primitives quite similar to RL itself, but instead of working with context-preserving reductions, it
uses a fixed program, assignments, and a program counter. The transformation itself is made in the context
of a result variable, say, result. In the case of the expression we had previously, it would be translated to
{int*x;x := y[i 7→ k];skip;result := x[i]}. The skip operation introduced is only there for bookkeeping
purposes to help with the proof of the bisimulation. The store and the reference counts behave as in RL,
but the stack contains additional result variables, which hold the results of functions before the end of
their execution, as there is no return construct but the return is implicit at the end of the function instead.
Moreover, the execution uses a fixed program and only keeps a call stack, which is a stack of triples of function
identifiers, position of the program counter within the given function, and local stack depth to that function.

Our objective is to construct a simple formalization of the correctness of the code generator. Thus, the
languages and the code generator presented here are an idealization of the PVS2C code generator that exists
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e ::= | n
| x
| nil
| f(x1, . . . , xn)

| let (x : int*
n) = e1 in e2

| ifnz x then e1 else e2

| x[y]

| x[y 7→ z]

| newint(n) | newref(n)

| pop(e1) | ref(k)

Figure 1: Syntax of FL

redex ::= | x
| f(x1, . . . , xn)

| x[y]

| x[y 7→ z]

| newint(n)

| newref(n)

| ifnz x then e1 else e2

| let x = v in e

| pop(v)

, where v is a value.

Figure 2: Definition of a redex

and generates C code from the executable fragment of PVS. The intermediate representations have been chosen
to simplify the proofs, while allowing the addition of new constructs without too much overhead.

2 A Small Functional Language

The source functional language FL features recursive functions, let-bindings and immutable arrays, and is in
A-normal form. Internally we always use de Bruijn indices everywhere for the variables for the simplicity that
goes with them; however, in the paper we will use identifiers when giving examples to make the example more
readable. Its syntax is defined in Figure 1.

Here, int*
n means int

n︷ ︸︸ ︷
* . . .*. For the sake of simplicity, we will often omit the type annotations on

the let constructors. The pop and ref constructors are not allowed in programs and are used only during
reduction.

We also define a context as the following:

K ::= � | let (x : int*
n) = K1 in e1 | pop(K1)

The composition of a context and an expression consists in replacing the hole � by the expression.
A value is a reference, a constant or nil. A redex is defined in Figure 2.

Theorem 1. Every expression that is not a value can then be decomposed as the composition of a context and
a redex.
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(x, S,M)→ (S(x), S,M)

(x[y], S,M)→ (M(S(x))(S(y)), S,M)

(x[y 7→ z], S,M)→ (new(M), S,M[new(M) 7→ M(S(x))[S(y) 7→ S(z)]])

(newint(n), S,M)→ (new(M), S,M[new(M) 7→ 〈0, . . . , 0〉])
(newref(n), S,M)→ (new(M), S,M[new(M) 7→ 〈nil, . . . ,nil〉])

(let x = v in e, S,M)→ (pop(e),push(x, v, S),M)

(pop(v), S,M)→ (v,pop(S),M)

(ifnz x then e1 else e2, S,M)→

({
e1 if S(x) 6= 0

e2 else
, S,M

)
(f(x1, . . . , xn), S,M)→ (v, S,M) for primitive f , where f(S(x1), . . . , S(xn))

δ→ v

(f(x1, . . . , xn), S,M)→ (popn(e),push(an, S(xn), . . . ,push(a1, S(x1), S) . . . ),M)

where e is the body of f , a1, . . . , an its arguments

Figure 3: Semantics of FL

The state is defined as a triplet (e, S,M), where e is an expression, S is the stack, which maps variables to
values, andM the state of the memory, which maps a finite number of references to finite sequences of values.

We denote by new(M) a reference that is not yet defined in M, and S(x) as the element on the stack

corresponding to x.We use
δ→ for a reduction relation that describes how primitive functions such as + work.

The small-step semantics are defined as the unique context-preserving relation→ that is defined on redexes
as in Figure 3. It is easily seen that it is deterministic.

It is an error to access or modify outside the bounds given by the store, as well as to call a non-existent
function or to call them with an incorrect number of arguments, or to use primitive operations with unsupported
arguments. The state obtained after such erroneous reductions will be denoted as ⊥.

For instance, suppose swap(t, i, j) is let a = t[i] in let b = t[j] in let t′ = t[i 7→ b] in t′[j 7→ a].
Suppose that e = let z = +(y, 1) in swap(x, y, z) with S = (y 7→ 0, x 7→ r) and M = (r 7→ 〈0, 1〉). Steps of
the reduction are detailed in Figure 4.

3 Evaluation with Reference Counting

For the reference-counting language RL, we now have an additional constructor, release(x,B), which is a
redex as well. In addition, each variable can be marked, meaning this occurence of the variable is the last. We
maintain as an invariant the count, written C, for each reference. It is defined as follows:

Defining #(S, x) as the number of times x appears in the sequence S, we have:

C(ref(k)) = 1ref(k)∈e + #(S,ref(k)) +
∑

ref(s)∈M

#(M(ref(s)),ref(k)) (1)

The advantage of defining and maintaining this reference count is to be able to free memory once it is no
longer needed, and to be able to perform more efficient destructive updates on the arrays.

The evaluation also preserves those three invariants:

early-release. Each variable in S that is no longer live in e is not bound to a reference.

correct-marking. The expression e is correctly marked (deleting all the markings in e and marking it again
returns an expression identical to e).

release-marked. All subterms of e of the form release(x,B) have that occurrence of x marked1.

1Together with the correct-marking invariant, this implies that x does not occur as a free variable in B.
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(let z = +(y, 1) in swap(x, y, z), (y 7→ 0, x 7→ r), (r 7→ 〈0, 1〉))
−→ (let z = 1 in swap(x, y, z), (y 7→ 0, x 7→ r), (r 7→ 〈0, 1〉))
−→ (pop(swap(x, y, z)), (z 7→ 1, y 7→ 0, x 7→ r), (r 7→ 〈0, 1〉))
−→ (. . .let a = t[i] in . . . , (j 7→ 1, i 7→ 0, t 7→ r, . . . ), (r 7→ 〈0, 1〉))
−→ (. . .let a = 0 in . . . , (j 7→ 1, i 7→ 0, t 7→ r, . . . ), (r 7→ 〈0, 1〉))
−→ (. . .let b = t[j] in . . . , (a 7→ 0, j 7→ 1, . . . ), (r 7→ 〈0, 1〉))
−→ (. . .let b = 1 in . . . , (a 7→ 0, j 7→ 1, . . . ), (r 7→ 〈0, 1〉))
−→ (. . .let t′ = t[i 7→ b] in . . . , (b 7→ 1, a 7→ 0, . . . ), (r 7→ 〈0, 1〉))
−→ (. . .let t′ = r′ in . . . , (b 7→ 1, a 7→ 0, . . . ), (r′ 7→ 〈1, 1〉, r 7→ 〈0, 1〉))
−→ (. . . t′[j 7→ a] . . . , (t′ 7→ r′, b 7→ 1, . . . ), (r′ 7→ 〈1, 1〉, . . . ))
−→ (. . . r′′ . . . , (t′ 7→ r′, b 7→ 1, . . . ), (r′′ 7→ 〈1, 0〉, . . . ))
−→+ (r′′, (y 7→ 0, x 7→ r), (r′′ 7→ 〈1, 0〉, r′ 7→ 〈1, 1〉, r 7→ 〈0, 1〉))

Figure 4: An example reduction

We use the following helper functions:

incr(v, C) = C[v 7→ C(v) + 1] if v is a reference

incr(v, C) = C otherwise

decr(v, C) = C[v 7→ C(v)− 1] if v is a reference

decr(v, C) = C otherwise

The function decr rec takes a value, the state of memory and a count, and if the value is a reference,
decreases its count. In case the count is zero, it recursively decreases the count of all the references pointed
by that one and replaces them by nil.

A few instances of reductions updated to preserve the invariants are presented in Figure 5.
The reduction of update redexes is by far the most complicated of all; but it is also the main reason why

we perform this step of reference counting.
For instance, suppose swap(t, i, j) is let a = t[i] in let b = t[j] in let t′ = t[i 7→ b] in t′[j 7→ a]. Suppose

that e = let z = +(y, 1) in swap(x, y, z) with S = (y 7→ 0, x 7→ r),M = (r 7→ 〈0, 1〉) and C = (r 7→ 2). Steps
of the reduction are detailed in Figure 6.

Notice how even though the reference count of r was 2 initially, we still saved a copy compared to Figure 4
and made a destructive update instead. Indeed, the reference count of the result of an array update is always
1. Either it is the result of a destructive update, in which case the reference count has to be 1, or it is a fresh
copy, in which case the count is 1 as well.

Theorem 2. With the reductions in Figure 5, it is an invariant that the count is accurate, that is, equation
1 holds, and the other invariants are preserved as well. It is also possible to adapt the reductions to preserve
the same invariants.

To translate an expression from the original version to the one with reference counting, we mark the
last occurence of each variable on each execution path, inserting release constructors if needed for ifnz
branches. This also corresponds to marking the last live occurrence of each variable.
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(x, S,M, C)→ (S(x), S,M, incr(S(x), C))
if x is not marked and S(x) is a reference

(x, S,M, C)→ (S(x), S[x 7→ nil],M, C) if x is marked and S(x) is a reference

(x, S,M, C)→ (S(x), S,M, C) otherwise

(x[y 7→ z], S,M, C)→ (S(x), S′[x 7→ nil],decr rec(M(S(x))(S(y)),

(M[S(x) 7→ M(S(x))[S(y) 7→ S(z)]],

incr(S(z), C′)))) if C(x) = 1 and S(x) 6= S(z) and x is marked

(x[y 7→ z], S,M, C)→ (new(M), S′′,

M[new(M) 7→ M(S(x))[S(y) 7→ S(z)]],

decr(M(S(x))(S(y)), incr(S(z),

(#(M(S(x)), ·) + C′′)[new(M) 7→ 1]))) otherwise

where (C′, S′) = (decr(S(z), C), S[z 7→ nil])

if z is marked and S(z) is a reference

(C′, S′) = (C, S) otherwise

where (C′′, S′′) = (decr(S(x), C′, S[x 7→ nil])) if x is marked

(C′′, S′′) = (C′, S′) otherwise

(release(x, e), S,M, C)→ (e, S[x 7→ nil],decr rec(S(x), (M, C))) if S(x) is a reference

(release(x, e), S,M, C)→ (e, S,M, C) otherwise

Figure 5: Semantics of some reductions in RL

(let z = +(y, 1) in swap(x, y, z), (y 7→ 0, x 7→ r), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ (let z = 1 in swap(x, y, z), (y 7→ 0, x 7→ r), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ (pop(swap(x, y, z)), (z 7→ 1, y 7→ 0, x 7→ r), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ (. . .let a = t[i] in . . . , (j 7→ 1, i 7→ 0, t 7→ r, . . . , x 7→ nil), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ (. . .let a = 0 in . . . , (j 7→ 1, i 7→ 0, t 7→ r, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ (. . .let b = t[j] in . . . , (a 7→ 0, j 7→ 1, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ (. . .let b = 1 in . . . , (a 7→ 0, j 7→ 1, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ (. . .let t′ = t[i 7→ b] in . . . , (b 7→ 1, a 7→ 0, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ (. . .let t′ = r′ in . . . , (b 7→ 1, a 7→ 0, . . . , t 7→ nil, . . . ), (r′ 7→ 〈1, 1〉, r 7→ 〈0, 1〉), (r′ 7→ 1, r 7→ 1))

−→ (. . . t′[j 7→ a] . . . , (t′ 7→ r′, b 7→ 1, . . . ), (r′ 7→ 〈1, 1〉, . . . ))
−→ (. . . r′ . . . , (t′ 7→ nil, b 7→ 1, . . . ), (r′ 7→ 〈1, 0〉, . . . ), (r′ 7→ 1, . . . ))

−→+ (r′, (y 7→ 0, x 7→ nil), (r′ 7→ 〈1, 0〉, r 7→ 〈0, 1〉), (r′ 7→ 1, r 7→ 1))

Figure 6: An example reduction in RL
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e ::= | n
| x
| nil
| f(x1, . . . , xn)

| x[y]

| x[y 7→ z]

| newint(n)

| newref(n)

s ::= | x := e

| ifnz x then s1 else s2

| skip
| {s1; s2}
| release x

| {int*n x; s}

decl ::= int*
n x

function ::= (name,decl∗, s)

program ::= function∗

Figure 7: Syntax of IL

For instance, underlined variables representing marked variables, we have the following translation:

let x = g(w) in

let t =

ifnz x then

f(y, z)

else

f(y, s)

in

f(t, s)

=⇒

let x = g(w) in

let t =

ifnz x then

f(y, z)

else

release(z, f(y, s))

in

f(t, s)

To establish a bisimulation between the reference-counting version (e′, S′,M′, C′) and the original one
(e, S,M), we say these two states match if there exists a translation function f from the elements of the
domain of M′ with a count greater than zero to those of the domain of M such that:

• The expression e is the result of translating the references (applying f to each of the references) when
unmarking all the variables and removing all release constructors in e′,

• For each variable x that is live in e′, S(x) is the result of translating the references of S′(x),

• For each reference s in the domain of M′ with a count greater than zero, M(f(s)) is the result of
translating the references of M′(s).

Note that although it is not required for the translation function to be injective, it is actually an invariant
(that we however do not need to prove to obtain the bisimulation result).

Theorem 3. If the state S = (e, S,M) matches the state S ′ = (e′, S′,M′, C′), we have:

• if the current redex of e′ is a release redex, then the state obtained when reducing S ′ after one step
still matches the state S,

• if it is not a release redex, then the state obtained when reducing S and the one obtained when reducing
S ′ for a step each still match each other.

Theorem 4. The reduction relations −→ in FL and −→+ in RL are in bisimulation.

4 A Small Imperative Language

The target of our code generation will be an imperative language IL, with some high-level primitives that keep
track of reference counts. From there, we can go to a lower-level imperative language such as C that does not
keep track of reference counts automatically. A program IL is defined as a sequence of functions, whose body
is a statement, with the definitions in Figure 7.

As in RL, variables can be marked. A value is now either nil, an integer, a reference or undef. It is an
error to use the value undef in any expression.

Once a program with definitions ∆ is fixed, the state is now a quadruplet (R, S,M, C), where as previously,
S is the stack, which maps variables to values, M and C are the store and the reference counts, respectively.
R is the call stack, which holds triplets composed of a function identifier, the position of the program counter
within that function, and the local stack depth in that function.
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length({s1; s2}) = length(s1) + length(s2)

length({int*nx; s}) = 2 + length(s)

length(ifnz x then s1 else s2) = 1 + length(s1) + length(s2)

length(s) = 1 otherwise

Figure 8: Definition of length

extract({s1; s2}, pc) =

{
extract(s1, pc) if pc < length(s1)

extract(s2, pc− length(s1)) otherwise

extract({int*nx; s}, pc) =

{
extract(s, pc− 1) if 0 < pc < 1 + length(s)

({int*nx; s}, pc) otherwise

extract(ifnz x then s1 else s2, pc) =


(ifnz x then s1 else s2, 0) if pc = 0

extract(s1, pc− 1) if 0 < pc < 1 + length(s1)

extract(s2, pc− 1− length(s1)) otherwise

extract(s, pc) = (s, 0) otherwise

Figure 9: Definition of extract

We define the length of a statement in Figure 8. We also define extract and next to respectively extract
the statement at the current position of the program counter, and to move the program counter to its next
position (both are defined for pc < length(s)) in Figures 9 and 10.

Examples of how these functions work are given in Figure 11. Note that if (t, j) = extract(s, pc) and
j 6= 0, then t is a statement of the form {int*n x; t′} and j = length(t)− 1 = length(t′) + 1.

The semantics of IL is defined in Figure 12. Notice that there is a variable pushed implicitly on the stack
before the arguments when calling a function, which is used to hold the return value of the function, as there is
no explicit return operation. In the following, we shall call that variable result whenever we need a name
for it.

To translate a function with body e from RL to the IL, we use translate(e,result), where translate is
defined in Figure 13. Note that in the case of the translation of let constructs, the variable bound by the let
already exists in the branch of the let where we need to define it, so that the de Bruijn indices in RL and
IL are not the same. The skip introduced in the let translation is there to make the proof of bisimulation
easier.

Taking once again the example of our original swap program, once translated, we have the program seen
in Figure 14a. The steps of its reduction are detailed in Figure 14b.

Finally, to prove that the imperative program obtained from translation behaves as the original program,
we notice the following facts:

• Given the position of the program counter and stack, it is possible to reconstruct the redex and context
for a single function,

• Given the position of the program counter inside a function that is calling another, it is possible to
reconstruct the context for this function,

• Given these positions, it is also possible to reconstruct a mapping from all the variables defined at that
point in RL and IL such for each of these variables, the value in both stacks are the same (with variable
names, the mapping is the identity, but not with de Bruijn indices),

• If we have passed the point where translate(A, x) sets the variable x, then the variable x should not
have the value undef

• At all times, the store and counts are the same in both languages.

Showing that all these invariants are preserved makes it possible to prove the following:

Theorem 5. The reduction relations −→ in RL and −→+ in IL are in bisimulation.
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next({s1; s2}, pc) =

{
next(s1, pc) if pc < length(s1)

length(s1) + next(s2, pc− length(s1)) otherwise

next({int*nx; s}, pc) =


1 if pc = 0

1 + next(s, pc− 1) if 0 < pc < 1 + length(s)

2 + length(s) otherwise

next(ifnz x then s1 else s2, pc) =



⊥ if pc = 0

1 + next(s1, pc− 1)
if 0 < pc < 1 + length(s1)
∧ next(s1, pc− 1) < length(s1)

1 + length(s1) + length(s2)
if 0 < pc < 1 + length(s1)
∧ next(s1, pc− 1) = length(s1)

1 + next(s2, pc− 1− length(s1)) otherwise

next(s, pc) = 1 otherwise

Figure 10: Definition of the next function.

0{int x;
1ifnz y then

2{int w;3 w := f(y)4}
else

{5x := t;6 y := x}
7}8

(a) The statement s, with annotated po-
sitions for the program counter. We have
length(s) = 8.

extract(s, 1) = (ifnz y . . . , 0) next(s, 1) = ⊥
extract(s, 2) = ({int w; . . . }, 0) next(s, 2) = 3

extract(s, 3) = (w := f(y), 0) next(s, 3) = 4

extract(s, 4) = ({int w; . . . }, 2) next(s, 4) = 7

extract(s, 6) = (y := x, 0) next(s, 6) = 7

extract(s, 7) = (s, 7) next(s, 7) = 8

(b) Some values of extract and next.

Figure 11: Examples of the values of length, extract and next
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(R, S,M, C)→ ((f, pc, depth− 1) :: R′,pop(S),M, C) if pc = length(∆(f)) ∧ depth > 1

(R, S,M, C)→ ([], [top(S)],M, C) if pc = length(∆(f)) ∧ depth = 1 ∧R′ = []

(R, S,M, C)→ ((g,next(∆(g), pc′), depth′) :: R′′,pop(S)[x 7→ top(S)],M, C)
if pc = length(∆(f)) ∧ depth = 1 ∧R′ 6= []

where (g, pc′, depth′) :: R′′ = R′

(x := f(x1, . . . , xn), 0) = extract(∆(g), pc′)

(R, S,M, C)→ ((f, npc, depth) :: R′, S,M, C) if s = skip

(R, S,M, C)→ ((f, npc, depth + 1) :: R′,push(x,undef, S),M, C) if s = {int*nx; s} ∧ j = 0

(R, S,M, C)→ ((f, npc, depth− 1) :: R′,pop(S),M, C) if s = {int*nx; s} ∧ j 6= 0

(R, S,M, C)→ ((f, pc + 1, depth) :: R′, S,M, C) if s = ifnz x then s1 else s2 ∧ S(x) 6= 0

(R, S,M, C)→ ((f, pc + 1 + length(s1), depth) :: R′, S,M, C)
if s = ifnz x then s1 else s2 ∧ S(x) = 0

(R, S,M, C)→ ((g, 0, n + 1) :: R,
push(an, S(xn), . . .push(a1, S(x1),push(result,undef, S′) . . . ),M, C′)

if s = x := g(x1, . . . , xn) and g is not a primitive operation

where S′(y) =

{
nil if y is marked in x1, . . . , xn and S(y) is a reference

S(y) otherwise

C′(r) = C(r) + |{i|xi is not marked ∧ S(xi) = r}|
(a1, . . . , an) are the arguments of g

(R, S,M, C)→ ((f, npc, depth) :: R′, S′[x 7→ v],M′, C′) if s = x := e

where (e, S,M, C)→≤1 (v, S′,M′, C′) in RL

(R, S,M, C)→ ((f, npc, depth) :: R′, S,M, C) if s = release x and S(x) is not a reference

(R, S,M, C)→ ((f, npc, depth) :: R′, S[x 7→ nil],decr rec((M, C), S(x)))

if s = release x and S(x) is a reference

where

(f, pc, depth) :: R′ = R,
(s, j) = extract(∆(f), pc),

npc = next(∆(f), pc)

Figure 12: Semantics of IL
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translate(n, x) = x := n

translate(y, x) = x := y

translate(nil, x) = x := nil

translate(f(x1, . . . , xn), x) = x := f(x1, . . . , xn)

translate(let (y : int*
n) = e1 in e2, x) = {int*n y; {translate(e1, y); {skip; translate(e2, x)}}}

translate(ifnz y then e1 else e2, x) = ifnz y then translate(e1, x) else translate(e2, x)

translate(y[z], x) = x := y[z]

translate(y[z 7→ w], x) = x := y[z 7→ w]

translate(newint(n), x) = x := newint(n)

translate(newref(n), x) = x := newref(n)

translate(release(y, e), x) = {release y; translate(e, x)}

Figure 13: Translation from RL to IL

5 Formalization in PVS

The following datatypes are used for the expressions and contexts of FL and RL (with the variable marks and
the release constructors being used only in the reference-counting version).

IExpression: DATATYPE
BEGIN

variable(index: nat, marked: bool): variable?
constant(value: int): constant?
nil: nil?
application(fun: nat, args: list[(variable?)]): application?
letexpr(letrhs: IExpression, body: IExpression): letexpr?
ift(condition: (variable?), thenexpr, elseexpr: IExpression): ift?
update(target, lhs, rhs: (variable?)): update?
lookup(arrayvalue, position: (variable?)): lookup?
newint(size: nat): newint?
newref(size: nat): newref?
pop(pbody: IExpression): pop?
ref(refindex: nat): ref?
release(rvar: (variable?), rexpr: IExpression): release?

END IExpression

IContext: DATATYPE
BEGIN

hole: hole?
letc(letcrhs: IContext, letcbody: IExpression): letc?
popc(pcbody: IContext): popc?

END IContext

Note that the types are not included in these definitions; we actually have both an untyped version, which
is the one presented above, and a typed version which is only a typing overlay on top of the untyped version.

The following is the statement of Theorem 1.

context_lemma: LEMMA
value?(A) OR (EXISTS K, B: redex?(B) AND A = fill(K, B))

We have a reduction function for each kind of redex; the small-step semantics are then defined as extracting
the redex inside the current expression, and reducing it (this can affect other parts of the state as well, such as
the stack and the store) while preserving the context. For instance, the definition below shows the reduction
of a variable redex, as in Figure 3.2. The type goodstate is defined as the subset of states that are not an
error state.

variableReduce(D)(gS: goodstate | variable?(gS‘redex)): estate =
gS WITH [‘redex := get(gS‘stack)(gS‘redex)]

2In PVS, gS‘redex means the record access to field redex of gS and gS WITH [‘redex := x] means a record update.
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swap(t, i, j)
0{int a;1 a := t[i];2 skip;
3{int b;4 b := t[j];5 skip;
6{int* t′;7 t′ := t[i 7→ b];8 skip;
9result := t′[j 7→ a]10}11}12}13

main()
0{int z;1 z := +(y, 1);2 skip;
3result := swap(x, y, z)4}5

(a) Translation of the swap program (removing
unnecessary braces for clarity). The exponents
show the position of the program counter.

([(main, 0, 3)], (y 7→ 0, x 7→ r,result 7→ undef,result 7→ undef), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(main, 1, 4)], (z 7→ undef, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(main, 2, 4)], (z 7→ 1, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(main, 3, 4)], (z 7→ 1, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(swap, 0, 4), (main, 3, 4)], (j 7→ 1, i 7→ 0, t 7→ r,result 7→ undef, . . . , x 7→ nil, . . . ),

(r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(swap, 1, 5), . . . ], (a 7→ undef, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(swap, 2, 5), . . . ], (a 7→ 0, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(swap, 3, 5), . . . ], (a 7→ 0, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(swap, 4, 6), . . . ], (b 7→ undef, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→+ ([(swap, 6, 6), . . . ], (b 7→ 1, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→ ([(swap, 7, 7), . . . ], (t′ 7→ undef, . . . ), (r 7→ 〈0, 1〉), (r 7→ 2))

−→+ ([(swap, 9, 7), . . . ], (t′ 7→ r′, . . . , t 7→ nil, . . . ), (r′ 7→ 〈1, 1〉, r 7→ 〈0, 1〉), (r′ 7→ 1, r 7→ 1))

−→ ([(swap, 10, 7), . . . ], (t′ 7→ nil, . . . ,result 7→ r′, . . . ), (r′ 7→ 〈1, 0〉, . . . ), (r′ 7→ 1, . . . ))

−→+ ([(swap, 13, 4), . . . ], (j 7→ 1, . . . ), (r′ 7→ 〈1, 0〉, . . . ), (r′ 7→ 1, . . . ))

−→+ ([(swap, 13, 1), . . . ], (result 7→ r′, . . . ), (r′ 7→ 〈1, 0〉, . . . ), (r′ 7→ 1, . . . ))

−→ ([(main, 4, 4)], (z 7→ 1, . . . ,result 7→ r′, . . . ), (r′ 7→ 〈1, 0〉, . . . ), (r′ 7→ 1, . . . ))

−→ ([(main, 5, 3)], (y 7→ 0, . . . , ), (r′ 7→ 〈1, 0〉, . . . ), (r′ 7→ 1, . . . ))

−→+ ([(main, 5, 1)], (result 7→ r′,result 7→ undef), (r′ 7→ 〈1, 0〉, . . . ), (r′ 7→ 1, . . . ))

−→ ([], (result 7→ r′), (r′ 7→ 〈1, 0〉, r 7→ 〈0, 1〉), (r′ 7→ 1, r 7→ 1))

(b) Reduction of the imperative version of the swap program. See Figure 14a for the definitions
of the functions and the program counters positions.

Figure 14: Translation of the swap program and its reduction

12



Suppose the state is:

([(swap, 5, 6), (main, 3, 4)], (b 7→ 1, a 7→ 0, j 7→ 1, i 7→ 0, t 7→ r,result 7→ undef,

z 7→ 1, y 7→ 0, x 7→ nil,result 7→ undef,result 7→ undef), (r 7→ 〈0, 1〉), (r 7→ 2))

We extract the following:

(swap, 5, 6) (e = let b = 1 in let t′ = t[i 7→ b] in t′[j 7→ a],pop(pop(pop(pop(�))))

(main, 3, 4) pop(�)

Thus this state matches the state below we saw in the reduction of the swap program in RL.

(pop5(e), (a 7→ 0, j 7→ 1, i 7→ 0, t 7→ r, z 7→ 1, y 7→ 0, x 7→ nil), (r 7→ 〈0, 1〉), (r 7→ 2))

Figure 15: Bisimulation for the swap program

The top-level reduction function reduce performs a case analysis on the type of redex. The function
to topstate converts from the decomposition as an expression and a context to a single expression by filling
the hole of the context with the expression, while make redex e does the reverse and creates a redex and a
context from its argument.

reduce(D)(gS: goodstate): estate =
LET t = to_topstate(gS) IN
IF value?(t‘redex) THEN
t

ELSE
LET (nS: goodstate) = make_redex_e(t) IN
IF variable?(nS‘redex) THEN

variableReduce(D)(nS)
ELSIF pureLetRedex?(nS‘redex) THEN

letReduce(D)(nS)
ELSIF applyRedex?(nS‘redex) THEN

applyReduce(D)(nS)
ELSIF [...]

The reduction in the reference-counting version is very similar, but the reduction functions are a bit more
complicated. For example, the reduction of a variable redex is shown below.

variableReduce(D)(grS | variable?(grS‘redex)): rstate =
LET stack = grS‘stack,

store = grS‘store,
expr = grS‘redex

IN
LET value : (domainValue?(grS‘domain)) = get(stack)(expr) IN
IF ref?(value) THEN
IF marked(grS‘redex) THEN

grS WITH [‘redex := value,
‘stack‘seq(stack‘length - 1 - index(expr)) := nil]

ELSE
grS WITH [‘redex := value,

‘count(refindex(value)) := grS‘count(refindex(value)) + 1]
ENDIF

ELSE
grS WITH [‘redex := value]

ENDIF

Theorem 2 is partly enforced (equation 1 and the invariant (correct-marking)) by the types themselves,
relying heavily on PVS dependent typing features. The other two invariants are enforced by the following
lemmas.

reduce_ndr: JUDGEMENT
reduce(D)(grS | noDanglingRefs?(grS)) HAS_TYPE (noDanglingRefs?)

reduce_arm: JUDGEMENT
reduce(D)(grS | noDanglingRefs?(grS) AND allReleaseMarked?(grS‘redex) AND armc?(grS‘context))
HAS_TYPE { rS | allReleaseMarked?(rS‘redex) AND armc?(rS‘context) }
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The definition of the matching relation for the bisimulation is as follows, where translate refs is the
operation that translates all the references in its second argument with respect to the translation function
given as first argument.

stack_matches(translate)(S, S1, X): boolean =
S‘length = S1‘length AND
FORALL (i: (X)):

(i < S‘length AND
translate_refs(translate)(S‘seq(S‘length - i - 1)) =
S1‘seq(S1‘length - i - 1))

store_matches(translate)(rS, dom1, (store1: Store(dom1))): boolean =
FORALL (r: (rS‘domain)):
rS‘count(r) > 0 IMPLIES

dom1(translate(r)) AND store1(translate(r))‘length = rS‘store(r)‘length AND
FORALL (j: below(rS‘store(r)‘length)):

translate_refs(translate)(rS‘store(r)‘seq(j)) = store1(translate(r))‘seq(j)

state_matches(eS, rS)(translate): boolean =
eS‘error = rS‘error

AND translate_refs(translate)(unmark(rS‘redex)) = eS‘redex
AND unmark(rS‘context) = eS‘context
AND stack_matches(translate)(rS‘stack, eS‘stack,

union(cvars(rS‘redex), bumpn(cvars(rS‘context), popDepth(rS‘redex))))
AND store_matches(translate)(rS, eS‘domain, eS‘store)

state_matches?(eS, rS): boolean =
EXISTS (translate): state_matches(eS, rS)(translate)

Finally we can prove Theorems 3 and 4 as follows.

bisimulation_lemma: THEOREM
noDanglingRefs?(grS) AND allReleaseMarked?(grS‘redex) AND armc?(grS‘context) AND

state_matches?(to_topstate(gS), to_topstate(grS)) IMPLIES
state_matches?(reduce(D)(gS), rreduce_n(D)(top_releases_ct(grS‘redex) + 1, grS))

bisimulation_theorem: THEOREM
noDanglingRefs?(grS) AND allReleaseMarked?(grS‘redex) AND armc?(grS‘context) AND

state_matches?(gS, grS) IMPLIES
EXISTS (n: posnat): state_matches?(reduce(D)(gS), rreduce_n(D)(n, grS))

For IL, the datatypes are as follows:

iexpr: DATATYPE
BEGIN

ivar(vindex: nat, vmarked: bool): ivar?
iconstant(ival: int): iconstant?
inil: inil?
icall(ifun: nat, iargs: list[(ivar?)]): icall?
iupdate(itarget, ilhs, irhs: (ivar?)): iupdate?
ilookup(iaval, ipos: (ivar?)): ilookup?
inewint(size: nat): inewint?
inewref(size: nat): inewref?

END iexpr

istat: DATATYPE
BEGIN

iassign(avar: (ivar?), aexpr: iexpr): iassign?
idecl(dtype: nat, dstat: istat): idecl?
iif(icond: (ivar?), iftrue, iffalse: istat): iif?
iskip: iskip?
iblock(block1, block2: istat): iblock?
irelease(rvar: (ivar?)): irelease?

END istat

As previously, we use a different function for each possible reduction; for instance, here is one example
reduction (endi is a function which indexes finite sequences from the end, so that they can be used as stacks).
It corresponds to the beginning of a block, i.e., the 5th case in Figure 12.
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get_frame_body(iS | iS‘callstack‘length > 0): [stack_frame(iS‘defs), istat] =
(endi(iS‘callstack, 0), iS‘defs‘seq(endi(iS‘callstack, 0)‘ffct)‘body)

pushReduce(iS | iS‘callstack‘length > 0 AND pushRedex?(iS)): istate =
LET (lf, fbody) = get_frame_body(iS) IN
iS WITH [‘stack := add(vundef, iS‘stack),

‘callstack‘seq(iS‘callstack‘length - 1) :=
lf WITH [

‘fdepth := lf‘fdepth + 1,
‘fpc := next_pc(fbody, lf‘fpc)

]
]

Finally, to define the bisimulation relation for Theorem 5, the following declarations are used. The defi-
nitions store matches and count matches check that the store and the count, respectively, are the same
between the two reductions, while redex matches checks that the redex and the stack are matching between
the two versions.

store_matches(dom, (str1: [(dom) -> finseq[(value?)]]), (str2: [(dom) -> finseq[ivalue]])): bool =
FORALL (i: (dom)):
str1(i)‘length = str2(i)‘length AND
FORALL (j: below(str1(i)‘length)):

str2(i)‘seq(j) = val_to_ival(str1(i)‘seq(j))

count_matches(dom, (cnt1, cnt2: [(dom) -> int])): bool =
FORALL (i: (dom)): cnt1(i) = cnt2(i)

redex_matches(D, (trS | defs_well_typed(D, trS‘def_types)),
(iS | iS‘defs = translate_definitions(D, trS‘def_types) AND iS‘callstack‘length > 0)): bool =
LET fv = endi(iS‘callstack, 0) IN
LET (A, K, tv) = fct_reconstruct_state(D‘seq(fv‘ffct)‘body, iS‘stack,

D‘seq(fv‘ffct)‘arity, fv‘fdepth, fv‘fpc) IN
LET K1 = extract_call_context(D, trS‘def_types, iS) IN
LET tv1 = extract_call_tv(D, trS‘def_types, iS) IN
LET tv2 = compose_translate_vars(tv, tv1, popDepth(K) + popDepth(A), fv‘fdepth) IN
fill(compose(K1, K), A) = fill(trS‘state‘context, trS‘state‘redex) AND
(FORALL (i: below(popDepth(trS‘state‘redex) + popDepth(trS‘state‘context))):
endi(iS‘stack, tv2(i)) = val_to_ival(endi(trS‘state‘stack, i))) AND

fct_is_result_defined(D‘seq(fv‘ffct)‘body, iS‘stack, D‘seq(fv‘ffct)‘arity, fv‘fdepth, fv‘fpc)

state_matches(D, (trS | defs_well_typed(D, trS‘def_types)), iS): bool =
iS‘defs = translate_definitions(D, trS‘def_types) AND
iS‘domain = trS‘state‘domain AND
store_matches(trS‘state‘domain, trS‘state‘store, iS‘store) AND
count_matches(trS‘state‘domain, trS‘state‘count, iS‘count) AND
IF iS‘callstack‘length = 0 THEN
trS‘state‘context = hole AND

value?(trS‘state‘redex) AND
iS‘stack‘seq(0) = val_to_ival(trS‘state‘redex)

ELSE
redex_matches(D, trS, iS)

ENDIF AND
trS‘state‘error = iS‘error

Here, val to ival converts between the two different types of values and translate definitions
translates all definitions using the algorithm in Figure 13. Since we use de Bruijn indices, it is not the variables
names but their indices which matter, and these are different in the original and the translated version, so
the task of the tv, tv1 and tv2 variables is to make this translation, while extract call tv extracts this
translation for all the functions in the call stack except the current one, and compose translate vars
reconstructs the global translation function. Finally, fct translate state and extract call context
respectively extract the redex and context from the current function and the context from the rest of the call
stack, while fct is result defined checks that if we are after the place where the result variable should
have been defined, then it is not bound to undef (which would break the correctness of redex extraction).

We can then prove the result below.

bisimulation_lemma: LEMMA
FORALL (D, (trS |

defs_well_typed(D, trS‘def_types)), iS):
NOT iS‘error AND
state_matches(D, trS, iS) IMPLIES
(state_matches(D, trS, reduce(iS)) AND
max_inst_steps(reduce(iS)) < max_inst_steps(iS))

OR
state_matches(D, typed_iareduce(D)(trS),

reduce(iS))
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All of the code is available at https://github.com/SRI-CSL/PVSCodegen.

6 Conclusions

The PVS2C code generator [2] translates an applicative fragment of PVS into C code. This work proves the
correctness of an idealized version of this code generator, translating a functional language that is a subset of
the intermediate language of PVS2C code generator to an imperative language with high-level operations for
reference counting.

Future work could include verifying the translation of that imperative language to a subset of C, the
translation of a fragment of PVS to the intermediate language, and supporting first-class functions and closures.
Once the translation to C is verified as well, certified C compilers such as CompCert [4] can be used to achieve
fully certified code generation.

References

[1] M. Felleisen. On the expressive power of programming languages. In European Symposium on Programming,
number 432 in Lecture Notes in Computer Science, pages 35–75. Springer-Verlag, 1990.
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