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1 INTRODUCTION

Numerical code often consists in nested loops operating over multidimensional arrays. Such loop
nests are the target of many compiler optimizations. For example, memory locality can be improved
by permuting two nested loops, fusing two consecutive loops, or tiling the iteration space [Muchnick
1997]. Likewise, parallelism can be increased by vectorization or loop scheduling.

The polyhedral model, also known as the polytope model, is a high-level, declarative intermediate
representation for loop nests [Feautrier and Lengauer 2011]. In the polyhedral model, many loop
optimizations can be expressed and performed in a uniform manner as transformations over the
polytopes describing the iteration space. (Section 2 illustrates the approach on a simple example.)
Optimizers based on the polyhedral model have been integrated in compilers for conventional

languages: for example, Graphite [Trifunović et al. 2010] adds polyhedral optimizations to GCC,
and Polly [Grosser et al. 2012] to LLVM.

Another use for the polyhedral model is to synthesize efficient software or hardware implementa-
tions of matrix and tensor computations. Domain-specific languages such as Halide [Ragan-Kelley
et al. 2017], Tensor Comprehensions [Vasilache et al. 2019] or VOBLA [Beaugnon et al. 2014] make
it easy to write high-level specifications of such computations, which can, then, be automatically
translated to polyhedral models and compiled to efficient low-level code.

This paper reports on the formal specification of a polyhedral model and the formal verification of
one part of a loop optimizer based on the polyhedral model. Compiler verification applies program
proof and other verification techniques to the compiler in order to rule miscompilation out: the
generated code is guaranteed to execute as prescribed by the semantics of the source program.
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Fig. 1. General shape of a polyhedral optimizer (top) and contribution of this paper (bottom)

Recent examples of formally-verified compilers include CompCert [Leroy 2009] for the C language
and CakeML [Kumar et al. 2014] for a functional language. A verified polyhedral optimizer could
be integrated in CompCert, equipping this compiler with loop optimizations that it currently lacks.
Such an optimizer could also be the basis for a verified code generator from a domain-specific
language of tensor computations such as Halide. The formal verification would increase assurance
in this kind of code synthesis.

Traditionally, a polyhedral optimizer comprises three parts, as depicted in Figure 1:
(1) detection of loop nests in Fortran or C source code, and construction of the corresponding

polyhedral representations;
(2) optimization via transformations over the poyhedral representation;
(3) generation of an equivalent, sequential or parallelized, loop nest that can be given to a

conventional compiler.
Preliminary investigations by Pilkiewicz [2013] suggest that part (2), that is, polyhedral optimiza-
tions proper, lends itself well to translation validation [Pnueli et al. 1998]: the polyhedral models
before and after each program transformation are checked for semantic equivalence by generating
formulas in Presburger arithmetic, which are then verified with the help of Farkas certificates.

In this paper, we focus on part (3) of a polyhedral optimizer. We describe the formal verification,
using the Coq proof assistant, of a code generator that produces efficient sequential code from a
polyhedral representation. This code generator follows the polyhedra scanning approach described
by Bastoul [2004] and used in GCC. The verification is more difficult than that of purely polyhedral
transformations, as it combines algebraic reasoning over polyhedral operations, using certified
linear algebra, with CompCert-style semantic reasoning over the executions of the generated code.
The contributions of this paper are as follows. After a short tutorial on the polyhedral model

(section 2), we formalize the syntax and semantics of Poly, a simple polyhedral language (section 3).
We then describe a code generator for this language, along with its correctness arguments. As
shown in Figure 1, the code generator comprises four passes: schedule elimination, replacing the
input schedule by the identity schedule (section 4); decomposition into abstract loops expressed in
the intermediate language PolyLoop (section 5); elimination of redundant constraints produced by
the previous pass (section 6); and generation of concrete loops expressed in a simple sequential
imperative language, Loop (section 7). We formalized the code generator, its source, intermediate
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for (int i = 0; i < n; i++ ) {

for (int j = 0; j < n; j++ ) {

C[i][j] = 0;

for (int k = 0; k < n; k++ ) {

C[i][j] += A[i][k] * B[k][j];

}

}

}

(a) Matrix multiplication

for (int m = 0; m < n; m++ ) {

binom[m][0] = 1;

binom[m][m] = 1;

for (int k = 1; k < m; k++ ) {

binom[m][k] =

binom[m-1][k-1] + binom[m-1][k];

}

}

(b) Binomial coefficients computation

Fig. 2. Familiar numerical computations as loop nests

and target languages, and its correctness proofs using the Coq proof assistant and the VPL [Boulmé
et al. 2018] verified library of polyhedral operations (section 8). The Coq development is available at
https://github.com/Ekdohibs/PolyGen. Finally, we describe related work in more details (section 9),
then discuss the next steps in developing this code generator further (section 10).

2 AN OVERVIEW OF THE POLYHEDRAL MODEL

Many numerical computing problems can be formulated as loop nests. Figure 2 shows two well-
known examples:matrixmultiplication and binomial coefficients computation using Pascal’s triangle.
More precisely, these are imperfect loop nests: each loop can contain a sequence of statements or
other loops. These imperfect loop nests are thus described by the grammar:

𝑠 ::= for (...) { 𝑠 } | 𝑠;𝑠 | I

where I stands for base instructions such as assignments. Moreover, we impose the additional
restriction that all loop bounds and array indices are affine in the existing variables: they are of
the form 𝑎1*x1 + · · · + 𝑎𝑛*xn + c, where x1,...,xn are the existing variables. Even with these
restrictions, a great many numerical computing problems can be expressed in this way.

These programs are amenable to many optimizations such as loop splitting, loop fusion, changing
the order of two loops, or even more complicated transformations that completely change the
iteration order. All these transformations can be understood in a common framework, the polyhedral
model, which we now present. This framework is sufficiently general to handle both simple, classical
optimizations and more advanced ones, making it possible to factor out the formalization effort.
The polyhedral model works by considering each base instruction in an imperfect loop nest as

an instruction that must be executed at every integer point from a given polyhedron. Moreover,
the model specifies an order in which these instructions must be executed. For instance, in the
binomial coefficients computation above, we have three base instructions, I0, I1 and I2, given by:

I0 (m) = binom[m][0] = 1;

I1 (m) = binom[m][m] = 1;

I2 (m, k) = binom[m][k] = binom[m-1][k-1] + binom[m-1][k];

These base instructions must be executed for every point of the polyhedron {m ∈ Z | 0 ≤ m < n}
for I0 and I1, and {(m, k) ∈ Z2 | 1 ≤ k < m < n} for I2. However, these polyhedra alone are not
enough to specify the behavior of this program: we also need to specify an execution order. In our
case, it is given by executing the instructions in lexicographically increasing order of the (m, 0, 0)
for I0, (m, 1, 0) for I1, and (m, 2, k) for I2. The constants 0, 1, 2 are used to represent the order of
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Fig. 3. Example polyhedra for code generation

the instructions when using the ; operator. Such a specification of the execution order is called a
schedule. The formal definition of this polyhedral language is presented in section 3.

Next, wewish to optimize the program in this polyhedral representation. This is done by changing
the schedule, which corresponds to changing the iteration order. For instance, suppose we want to
change our binomial program to perform initialization (instructions I0 and I1) before the rest of
the code, and we also want to change the nested loops to iterate first over k and then over m. We
can change our schedule to (0, m, 0) for I0, (0, m, 1) for I1, and (1, k, m) for I2. This transformation
is allowed, because each time we get two instructions with a data dependency between one and
the other, they are in the same order in the initial polyhedral program and the new polyhedral
program. These data dependencies can be determined by the Bernstein conditions [Bernstein 1966],
and as this step is heuristic, it is very amenable to translation validation, with a verifier checking
that the new polyhedral program respects the data dependencies. At any rate, as data dependencies
play no part in our generator, we will safely ignore these for the rest of the paper.

Last, we need to generate code that corresponds to this new schedule. The first step is schedule
elimination: we prefix the schedule to the points, modifying the polyhedra to express that change.
This replaces the explicit schedule, based on an explicit ordering on the different points, by an
implicit schedule based on a lexicographic ordering on the points. In our case, the new polyhedra
would be:

• {(𝑥1, 𝑥2, 𝑥3, m) ∈ Z4 | 𝑥1 = 𝑥3 = 0 ∧ 0 ≤ 𝑥2 = m < n} for I0,
• {(𝑥1, 𝑥2, 𝑥3, m) ∈ Z4 | 𝑥1 = 0 ∧ 𝑥3 = 1 ∧ 0 ≤ 𝑥2 = m < n} for I1,
• {(𝑥1, 𝑥2, 𝑥3, m, k) ∈ Z5 | 𝑥1 = 1 ≤ 𝑥2 = k < 𝑥3 = m < n} for I2.

Once this is done, we generate code that scans the given polyhedra in lexicographic order.
The case of only one polyhedron is simple: we generate one loop per dimension, computing the
projection on the current dimensions, and setting the bounds of the loop according to the projection.
For instance, to generate loops corresponding to the black points in Figure 3a (in lexicographic
order of i then j), we first generate an external loop for (int i = 0; i < 5; i++), since the
projection of the polyhedron on the first variable i gives {i | 0 ≤ i < 5}. Then, inside that loop, we
generate the loop for (int j = 0; j <= i; j++), since the projection on the plane generated
by both i and j is equal to the whole polyhedron, {(i, j) | 0 ≤ j ≤ i < 5}. Finally, that second loop
contains the instruction I(i, j).
The case of several polyhedra is more involved, as illustrated in Figure 3b. The naïve way of

generating code in that case is to generate scanning code as outlined above for the union of the
polyhedra, and, in the body of the generated loops, add a test to ensure that we are inside the
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polyhedron corresponding to the instruction. For instance, associating black points with instruction
I1 and red triangles with instruction I2, the body of the loop nest executes

I1(i, j); if (i == 4) I2(i, j); .

However, we can produce more efficient code that does not contain tests that are useless for the
most part of the loop. To this end, we project each polyhedron independently and then separate
the projections into unions of polyhedra so that, in each of these polyhedra, the projection of each
input polyhedron either contains that polyhedron or is disjoint from it. In our case, we split the
projections in two different parts, {i | 0 ≤ i < 4} and {i | i = 4}. As previously, we repeat the
generating operation under each loop node. In the end, we obtain the following code:

for (int i = 0; i < 4; i++) {
for (int j = 0; j <= i; j++) {

I1(i, j);
}

}
for (int j = 0; j < 4; j++) {

I1(4, j);
I2(4, j);

}

3 THE SOURCE LANGUAGE

The source language for our code generator is a polyhedral notation for loop nests. It is parameter-
ized by a language of base instructions I, typically assignments such as

A[𝑥1][𝑥3] += B[𝑥1][𝑥2] * C[𝑥2][𝑥3].

As this example shows, base instructions are parameterized by a vector 𝑥 ∈ Z𝑛 of integer indices.
The semantics of base instructions is given in operational style, as a relation (I(𝑥),M1) ⇓I M2
between the memory states before (M1) and after (M2) the execution of I with indices 𝑥 . Since we
do not need to perform dependence analysis, we keep instructions, their semantics, and memory
states completely abstract.
A polyhedral program is a multiset of polyhedral instructions, each being a quadruplet
(I,D, 𝜃,T). Such a polyhedral instruction describes the iteration of a base instruction I over a
sequence of parameters 𝑥 . More precisely, the four components of a polyhedral instruction are:

• I is the base instruction to iterate.
• D is the iteration domain. It is a polyhedron: the set of integer tuples that satisfy a set of
linear inequalities. It is thus described by a matrix 𝐴 and a vector 𝑎, with

D = {𝑥 ∈ Z𝑛 |𝐴𝑥 ≤ 𝑎}.

• 𝜃 is the scheduling function. It is an affine function1 from elements of D to tuples of integers
that act as time stamps. It is described by a matrix 𝐾 and a vector 𝑘 :

𝜃 : 𝑥 ↦→ 𝐾𝑥 + 𝑘.

1Some polyhedral code generators, such as [Ancourt and Irigoin 1991], require that the scheduling function be unimodular
so that points in the polyhedron are always integer affine functions of the schedule. Our generator accepts arbitrary affine
scheduling functions. Non-unimodular scheduling functions such as 𝑖 ↦→ 2𝑖 will produce correct but possibly inefficient
code involving tests such as if (j mod 2 = 0).
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• T is the transformation function that produces the arguments given to the base instruction
I. Like 𝜃 , it is an affine function, described by a matrix 𝑇 and a vector 𝑡 :

T : 𝑥 ↦→ 𝑇𝑥 + 𝑡 .
Most polyhedral models in the literature have no transformation function (T is the identity).
We find these functions useful to express simplifications and transformations without rewriting
the instructions I themselves. For example, assume that, during tiling, index 𝑖 becomes 5𝑖1 + 𝑖2.
Traditionally, instructions such as 𝐴[𝑖] = 0 are rewritten into 𝐴[5𝑖1 + 𝑖2] = 0. We prefer to treat
instructions as an opaque type, without any substitution operation, and use the transformation
function to record the substitution explicitly:(

𝑖
)
= 𝑇

(
𝑖1
𝑖2

)
+ 𝑡 where 𝑇 =

(
5 1

)
and 𝑡 =

(
0
)
.

The standard formulation of the polyhedral model, without transformation functions, can be
recovered by considering each base instruction to be the composition of I and T .
A simplified semantics for a single polyhedral instruction (I,D, 𝜃,T) is as follows. First, enu-

merate the elements of D in lexicographic nondecreasing order of the time stamps 𝜃 (𝑥):
D = {𝑥1, . . . , 𝑥𝑛} with 𝜃 (𝑥𝑖 ) ≼ 𝜃 (𝑥 𝑗 ) if 𝑖 ≤ 𝑗

Then, repeatedly execute instruction I with parameters T (𝑥𝑖 ), going from stateM0 to stateM𝑛 :

(I(T (𝑥1)),M0) ⇓I M1 . . . (I(T (𝑥𝑛)),M𝑛−1) ⇓I M𝑛

Note that the semantics is non-deterministic, even if the base instruction 𝐼 has deterministic
semantics: if 𝜃 (𝑥) = 𝜃 (𝑥 ′), then I(T (𝑥)) and I(T (𝑥 ′)) can be executed in any order.

The full semantics for a polyhedral program P is similar, with two extensions. First, it is useful
to parameterize executions of polyhedral programs over some quantities, typically matrix dimen-
sions, that remain constant during execution. These constant quantities, usually named program
parameters, are given as an environment E: a vector of length 𝑘 that fixes the values of the first 𝑘
dimensions of the iteration space. Hence, the effective domain for the execution of (I,D, 𝜃,T) is

DE =

{(
E
𝑦

) ����𝑦 ∈ Z𝑛−𝑘 , (E𝑦 )
∈ D

}
Second extension: a polyhedral program comprises several polyhedral instructions. These in-

structions do not need to be executed one after the other; instead, their iterations can be interleaved
if the schedules allow. To formalize this idea, we need to assume that in a polyhedral program
P = (I𝑘 ,D𝑘 , 𝜃𝑘 ,T𝑘 )𝑘∈𝐾 all the domains D𝑘 have the same dimension, and all the images of the
scheduling functions Im(𝜃𝑘 ) have the same dimension. This can easily be ensured by adding extra
dimensions with value 0.

The semantics of the polyhedral program P in environment E is, then, defined as follows: iterate
over (I,D, 𝜃,T) ∈ P and over 𝑥 ∈ DE , in lexicographic nondecreasing order of 𝜃 (𝑥), and execute
the instructions I(T (𝑥)) sequentially in this order.

An example of a polyhedral program, and its possible execution orders are given in Figure 4.

4 ELIMINATING THE SCHEDULING FUNCTION

The scheduling function in polyhedral programs make it easy to express optimizations that change
the order of loops, such as loop interchange. However, polyhedral programs that have identity
scheduling functions are in close correspondence with loop nests: those programs execute by
enumerating tuples of variables in lexicographic order, hence the first variable naturally corresponds
to outermost loops, the second variable to the second-outer loops, and so on. This correspondence
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(I1, {(𝑛, 𝑥,𝑦) | 0 ≤ 𝑥 ≤ 𝑦 ≤ 𝑛},
(𝑛, 𝑥,𝑦) ↦→ (𝑥, 𝑥), (𝑛, 𝑥,𝑦) ↦→ (𝑥,𝑦)),

(I2, {(𝑛, 𝑥,𝑦) | 0 ≤ 𝑦 ≤ 𝑥 ≤ 𝑛},
(𝑛, 𝑥,𝑦) ↦→ (𝑥 + 𝑦 − 1, 1), (𝑛, 𝑥,𝑦) ↦→ (𝑥))

(a) Polyhedral program to be executed

I1 (0, 0) ⇝ (0, 0) I2 (0) ⇝ (−1, 1)
I1 (0, 1) ⇝ (0, 0) I2 (1) ⇝ (0, 1)
I1 (1, 1) ⇝ (1, 1) I2 (1) ⇝ (1, 1)

(b) Instructions to be executed, and associated

timestamps for the environment (𝑛 = 1)

I2 (0); I1 (0, 0); I1 (0, 1); I2 (1); I1 (1, 1); I2 (1)
I2 (0); I1 (0, 0); I1 (0, 1); I2 (1); I2 (1); I1 (1, 1)
I2 (0); I1 (0, 1); I1 (0, 0); I2 (1); I1 (1, 1); I2 (1)
I2 (0); I1 (0, 1); I1 (0, 0); I2 (1); I2 (1); I1 (1, 1)

(c) Possible execution orders for the environment (𝑛 = 1)

Fig. 4. Example of a semantics for a polyhedral program

holds naturally when we transform a loop nest into a polyhedral program: we obtain a lexicographic
scheduling on the variables we used for iteration. Symmetrically, the first natural step of code
generation from a polyhedral program to a loop nest is to remove the explicit schedule and replace
it with an implicit schedule, which is lexicographic on the iteration variables.

It must be noted that such a transformation cannot preserve all possible executions of a polyhedral
program. Indeed, a general polyhedral program can have executions of the same instruction in
several different points, all corresponding to the same timestamp, thus leaving the execution order
of these instructions unspecified. (Some polyhedral generators use this to express that the loop
can be run in parallel, but we only consider sequential programs.) On the other hand, this is not
possible for a lexicographic schedule, since the lexicographic order is a total order, therefore two
different executions of a given instruction are necessarily ordered. This transformation, therefore,
does a partial determinization. Consequently, the correctness theorem for this transformation is
that every valid execution of the transformed program is a valid execution of the initial program.
On the other hand, some nondeterminism may remain after transformation: there is no constraint
on the execution order of two distinct instructions executed at the same point.

The schedule eliminationmethod presented in this section is the one introduced by Bastoul [2004].
It has numerous advantages for verification: it does not use complex operations over matrices, and
it works for all inputs, not just unimodular schedules. Its only disadvantage is that it increases the
number of variables that must be considered later during code generation, making code generation
slower.
The transformation is simple: it adds new variables as a prefix of the list of variables, one for

each dimension of the schedule, and sets the new variables to be equal to the value specified by
the scheduling function at the given point in the polyhedral constraints. Since the semantics of
polyhedral programs is specified by setting an environment as a prefix of the list of variables, we
need to know the size of the environments for the transformation, and keep the environments as a
prefix of the list of variables, inserting our new variables after the environments. It is an instance
of the transformation usually called change of basis in the polyhedral literature.

Thus, assuming that the dimensions of the image of all scheduling functions 𝜃 are all the same,
we perform the following transformation, which for each polyhedral instruction (I,D, 𝜃,T) of P

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.
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generates (I,D ′, 𝜃 ′,T ′), where:

D =

{(
E
𝑦

) ���� (E𝑦 )
∈ Z𝑛,

(
𝐴𝑒 𝐴𝑣

) (
E
𝑦

)
≤ 𝑎

}
,

𝜃 :
(
E
𝑦

)
↦→

(
𝐾𝑒 𝐾𝑣

) (
E
𝑦

)
+ 𝑘,

T :
(
E
𝑦

)
↦→

(
𝑇𝑒 𝑇𝑣

) (
E
𝑦

)
+ 𝑡

and:

D ′ =
©­«
E
𝑢

𝑦

ª®¬
������ ©­«
E
𝑢

𝑦

ª®¬ ∈ Z𝑛′,
(
𝐴𝑒 0 𝐴𝑣
−𝐾𝑒 𝐼𝑑 −𝐾𝑣

) ©­«
E
𝑢

𝑦

ª®¬ ≤=
(
𝑎

𝑘

) ,
𝜃 ′ : ©­«

E
𝑢

𝑦

ª®¬ ↦→ ©­«
E
𝑢

𝑦

ª®¬ ,
T ′ : ©­«

E
𝑢

𝑦

ª®¬ ↦→
(
𝑇𝑒 0 𝑇𝑣

) ©­«
E
𝑢

𝑦

ª®¬ + 𝑡
Indeed, the definition of D ′ gives:

©­«
E
𝑢

𝑦

ª®¬ ∈ D ′⇔
(
E
𝑦

)
∈ D ∧ 𝑢 = 𝜃

(
E
𝑦

)
.

Then, the function Γ : D → D ′ defined by:

Γ :
(
E
𝑦

)
↦→

©­­­«
E

𝜃

(
E
𝑦

)
𝑦

ª®®®¬
is a bijection from D to D ′, with inverse ©­«

E
𝑢

𝑦

ª®¬ ↦→
(
E
𝑦

)
.

The new transformation function T ′ has moreover been chosen so that for all 𝑥 ∈ D, T (𝑥) =
T ′(Γ(𝑥)).

Besides, if ©­«
E
𝑢1
𝑦1

ª®¬ ∈ D ′1 and ©­«
E
𝑢2
𝑦2

ª®¬ ∈ D ′2, then we have (where ≺ is lexicographic order):

©­«
E
𝑢1
𝑦1

ª®¬ ≺ ©­«
E
𝑢2
𝑦2

ª®¬⇔ (𝑢1 ≺ 𝑢2) ∨ (𝑢1 = 𝑢2 ∧ 𝑦1 ≺ 𝑦2)
⇔ 𝜃1

(
E
𝑦1

)
≺ 𝜃2

(
E
𝑦2

)
∨ (𝑢1 = 𝑢2 ∧ 𝑦1 ≺ 𝑦2)

⇐ 𝜃1

(
E
𝑦1

)
≺ 𝜃2

(
E
𝑦2

)
,

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



Verified Code Generation for the Polyhedral Model 1:9

Skip

E ⊢ (skip,M) ⇓ M

Seq
E ⊢ (𝑠1,M1) ⇓ M2 E ⊢ (𝑠2,M2) ⇓ M3

E ⊢ (𝑠1; 𝑠2,M1) ⇓ M3

Instr
(I(𝑒1 (E), . . . , 𝑒𝑘 (E)),M1) ⇓I M2

E ⊢ (I(𝑒1, . . . , 𝑒𝑘 ),M1) ⇓ M2

GuardTrue
E ∈ P E ⊢ (𝑠,M1) ⇓ M2

E ⊢ (guard P 𝑠,M1) ⇓ M2

GuardFalse
E ∉ P

E ⊢ (guard P 𝑠,M) ⇓ M

Loop
∀𝑥, (E :: 𝑥 ∈ P ⇔ 𝑎 ≤ 𝑥 < 𝑏) ∀𝑥 ∈ {𝑎..𝑏 − 1}, (E :: 𝑥 ⊢ (𝑠,M𝑥 ) ⇓ M𝑥+1)

E ⊢ (loop P 𝑠,M𝑎) ⇓ M𝑏

Fig. 5. Big-step semantics for PolyLoop

which can be rephrased as: if 𝑥1 ∈ D1 and 𝑥2 ∈ D2 correspond to the same environment E, we
have:

𝜃1 (𝑥1) ≺ 𝜃2 (𝑥2) ⇒ 𝜃 ′1 (Γ1 (𝑥1)) ≺ 𝜃 ′2 (Γ2 (𝑥2)),
that is, by contraposition:

𝜃 ′2 (Γ2 (𝑥2)) ≼ 𝜃 ′1 (Γ1 (𝑥1)) ⇒ 𝜃2 (𝑥2) ≼ 𝜃1 (𝑥1).
As a consequence, for a fixed environment E, every valid ordering of instructions during the

execution ofP ′ is a valid ordering of instructions during the execution ofP. TheT = T ′◦Γ property
guarantees that the same instructions are executed. Thus, every execution of P ′ corresponds to an
execution of P, and this transformation preserves semantics. We also reach our goal: the 𝜃 ′ are
now the identity function, and the schedule is thus a lexicographic enumeration of the points of
the domains D ′ themselves.

5 DECOMPOSITION INTO LOOP NESTS

The second step of code generation is to compute the structure of the program in terms of imperfectly
nested loops. The control flow becomes explicit, but the conditions and loop bounds remain affine
and are represented by polyhedra. The target of this generation step is an intermediate language
called PolyLoop. The syntax of PolyLoop is as follows:

Expressions: 𝑒 ::= (𝑥1, . . . , 𝑥𝑘 ) ↦→
⌊(

𝑘∑
𝑖=1

𝑎𝑖𝑥𝑖 + 𝑐
)/
𝑑

⌋
where 𝑎𝑖 , 𝑐, 𝑑 ∈ Z, 𝑑 > 0

Polyhedra: P ::= {(𝑥1, . . . , 𝑥𝑘 ) ∈ Z𝑘 |𝐴(𝑥1 . . . 𝑥𝑘 )⊤ ≤ 𝑎} where 𝐴 ∈ M𝑝,𝑘 (Z), 𝑎 ∈ Z𝑝

Statements: 𝑠 ::= skip | 𝑠1; 𝑠2 | I(𝑒1, . . . , 𝑒𝑘 ) | guard P 𝑠 | loop P 𝑠
Expressions 𝑒 compute linear functions of their arguments, up to the floor function. Polyhedra P are
defined as in Poly by a matrix 𝐴, a vector 𝑎, and the constraint 𝐴𝑥 ≤ 𝑎. Statements comprise base
instructions, sequences, conditionals and loops. The conditional construct guard P 𝑠 executes 𝑠
if the current environment, mapping variables to their current values, is in the polyhedron P.
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Input: a list of lexicographically scheduled polyhedral instructions (I1,D1,T1), . . . , (I𝑛,D𝑛,T𝑛),
and the current dimension 𝑑 .
Output: a PolyLoop program.
(1) If 𝑑 is the dimension of the D𝑖 , return the program:

guard D1 I1 (T1); . . . ; guard D𝑛 I𝑛 (T𝑛)
(2) For each polyhedron D𝑖 , compute its projection P𝑖 on the 𝑑 first dimensions, and compute

the list of the P𝑖 → (I𝑖 ,D𝑖 ,T𝑖 ).
(3) Separate the projections P𝑖 into a list of disjoint polyhedra and their associated instructions:

from P1 → I1 and P2 → I2, we get (P1∩P2) → (I1;I2), (P1\P2) → I1, and (P2\P1) → I2,
and then repeat with the other polyhedra that need to be separated. The differences P1 \ P2
and P2 \P1 are not polyhedra, but unions of polyhedra: the list we produce is then potentially
very long.

(4) Compute the lexicographic ordering graph, which contains an edge P → P ′ if the loop over
P must be placed before the loop over P ′ in the result to respect the lexicographic schedule,
then sort the graph topologically. If the graph contains a cycle, the code generation fails.

(5) For each P → ((I1,D1,T1); . . . ; (I𝑘 ,D𝑘 ,T𝑘 )), let 𝑠 be the result of a recursive call with
current dimension 𝑑 + 1 and instruction list (I1,D1 ∩ P,T1), . . . , (I𝑘 ,D𝑘 ∩ P,T𝑘 ); build the
instruction loop P 𝑠 .

(6) Return the program formed by the sequence of the results from the previous step.

Fig. 6. Transformation of a polyhedral program into a PolyLoop program

The iteration construct, loop P 𝑠 executes 𝑠 for increasing values of 𝑥 such that the current
environment with 𝑥 added is in P. The semantics of PolyLoop are detailed in Figure 5. In rule
Loop, the precondition ∀𝑥, (E :: 𝑥 ∈ P ⇔ 𝑎 ≤ 𝑥 < 𝑏) ensures that the iteration domain is finite:
the rule does not apply if 𝑥 has no upper or no lower bound implied by P.

There are some similarities between PolyLoop and the schedule trees of Verdoolaege et al. [2014]
and Grosser et al. [2015], but their objectives are different: PolyLoop is a simple intermediate repre-
sentation, while schedule trees are more complex, as they are used as an intermediate representation
throughout code generation and subject to many transformations.
The algorithm used to transform a polyhedral program with lexicographic schedule into a

PolyLoop program is shown in Figure 6. It is based on the algorithm by Quilleré et al. [2000]. An
important difference is that there is no context in which we generate the syntax tree, and that we
do not simplify loop bounds in this context. Instead, this simplification is done in a separate phase
(described in section 6) that removes redundant constraints from a PolyLoop program without
changing its semantics.

The algorithm presented in Figure 6 generates a syntax tree corresponding to a given polyhedral
program. It proceeds dimension by dimension, starting with the outermost dimension that must be
generated: then, the recursive calls treat the iteration variable that has just been generated as an
additional parameter.

The first step of the algorithm considers the case where there is no variable left for which there
is code to generate. We then have to generate an instruction for each polyhedral instruction, with
a guard node to ensure that the instruction will only be executed if it is inside an environment
where it must be executed. These guards are redundant most of the time, and most of them will be
removed by the simplification pass described in section 6. We note an arbitrary scheduling decision
here: instructions are executed in the input order of the algorithm.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



Verified Code Generation for the Polyhedral Model 1:11

𝑥0

𝑥1

(a) P1

𝑥0

𝑥1

(b) P1

𝑥0

𝑥1

(c)

−→P1

𝑥0

𝑥1

(d) P̂1

𝑥0

𝑥1

(e) P1 and P2

𝑥0

𝑥1

(f) P1 cannot be ordered
before P2

𝑥0

𝑥1

(g) P1 and P2

𝑥0

𝑥1

(h)P1 can be ordered be-
fore P2

Fig. 7. Ordering two disjoint polyhedra with respect to execution order

The rest of the algorithm considers the case where we add another dimension. We first compute
the projections over the current dimensions and the new dimension, and we make a case disjunction
(steps 2 and 3) depending on which input polyhedra the current environment is in. Thus, each
instruction will only be in the internal loops for which is it necessary for it to appear.

Step 4 sorts the resulting list of polyhedra. Indeed, in the PolyLoop program, the loops that will
be generated need to be ordered; however, this means that in every environment, one of these
loops will always be executed before the other. Quilleré et al. [2000] show that it is always possible
to order two disjoint polyhedra to respect the desired execution order. The property “P1 can be
ordered before P2” is expressed as:

∀E, 𝑥1, 𝑥2, E :: 𝑥1 ∈ P1 ∧ E :: 𝑥2 ∈ P2 ⇒ 𝑥1 < 𝑥2.

This is the same as saying that in every environment, all iterations of P1 will be executed
before all iterations of P2. This can be determined by the criterion depicted in Figure 7. Define
P1 = {E :: 𝑥1 | ∃𝑥2, E :: 𝑥2 ∈ P1}, that is, the projection of P1 with respect to the variable 𝑥1, seen
as a polyhedron having the same dimension as P1. Further define

−→P1 as the polyhedron obtained
by only keeping the constraints of P1 for which the coefficient of 𝑥1 is positive, and P̂1 = P1 ∩

−→P1.
We then have that P2 must be ordered before P1 if and only if:

∃E, 𝑥1, 𝑥2, E :: 𝑥1 ∈ P1 ∧ E :: 𝑥2 ∈ P2 ∧ 𝑥2 ≤ 𝑥1
⇔ ∃E, 𝑥2, E :: 𝑥2 ∈ P2 ∧ E :: 𝑥2 ∈ P̂1
⇔ P̂1 ∩ P2 ≠ ∅.

We then have, as desired:

E :: 𝑥2 ∈ P̂1 ⇔ ∃𝑥1, E :: 𝑥1 ∈ P1 ∧ 𝑥2 ≤ 𝑥1.
However, in the case of three or more polyhedra, it can happen that there exist no compatible

order because the lexicographic ordering graph contains a cycle. An example involving three
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polyhedra is given in appendix A. In this case, our algorithm fails, aborting code generation. A
more sophisticated algorithm could, instead, divide some of the polyhedra in several fragments
that can be ordered independently.
Steps 5 and 6 make a recursive call on each polyhedron for which there is a loop to generate,

compute the corresponding PolyLoop subprograms, and combine them in sequence. The result is a
PolyLoop program whose semantics respect the semantics of the initial polyhedral program.
The correctness of this code generation algorithm is proved by showing, by induction on the

number of remaining dimensions, that in every environment, every execution of the generated
program corresponds to an execution of the initial polyhedral program. The base case is simple.
To handle the case where we generate the code for one more dimension, we have to show the
following results on the polyhedra obtained as result of step 4:

• If P is before P ′ in the list of obtained polyhedra, then P can be ordered before P ′ in every
environment;
• All polyhedra obtained are disjoint;
• If 𝑥 ∈ P𝑖 at the step 2, then 𝑥 is in one of the P of the obtained list, and the corresponding
instruction I𝑖 appears in the list of instructions of P.

These results are a consequence of the polyhedral computations performed at steps 3 and 4 of
the algorithm.

As previously mentioned, the base case of our algorithm (step 1 in Figure 6) systematically guards
the execution of instructions by a dynamic check that the current indices are within the corre-
sponding domains D𝑖 . Besides simplifying the correctness proof, these checks enable the recursive
case (steps 2 to 5) to safely over-approximate their intermediate results, namely the projections
P𝑖 and their further decomposition into unions of polyhedra P. (Excessive over-approximation
can trigger failures in step 4 or in the code generation algorithm from section 7, however.) Taking
advantage of this degree of freedom, we use Fourier-Motzkin elimination [Schrijver 1998, section
12.2] to compute the projections P𝑖 at step 2. Fourier-Motzkin elimination produces an exact result
in the rationals (Q) but an over-approximation in the integers (Z). Hence, the polyhedra P𝑖 may be
bigger than the exact projections in Z, but this does not endanger the correctness of the generated
PolyLoop code.

6 SIMPLIFICATION OF REDUNDANT CONSTRAINTS

To keep its correctness proof simple, the algorithm of section 5 generates a large number of
redundant constraints. For instance, it inserts a guard node before each instruction, which is most
of the time unnecessary as it is a direct consequence of the surrounding loop nodes. However, the
algorithm is written so that is it easy to remove most constraints in a separate pass, without having
to care whether it is possible to remove them while generating the PolyLoop code: whenever one
of these constraints could not be removed, it will simply be kept, and the generated code will be
slightly less efficient.

To simplify redundant constraints, we need a single primitive simplify, which takes as input a
polyhedron P and a context C, and returns a polyhedron P ′ verifying P ′ ∩ C = P ∩ C, which can
be reformulated as ∀𝑥 ∈ C, 𝑥 ∈ P ′⇔ 𝑥 ∈ P. The objective is that simplify returns a polyhedron
described by as few constraints as possible, since these are the constraints that will appear in the
generated code.

The algorithm for computing P ′ = simplify(P, C) is simple. Starting with P ′ = ∅, we consider
each constraint 𝑎𝑥 ≤ 𝑐 in P one after the other. If the constraint is implied by P ∩ C, that is, if
P ∩ C ∩ ¬(𝑎𝑥 ≤ 𝑐) = ∅, it is removed; otherwise, the constraint is added to P ′.
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psimpl(skip, C) = skip

psimpl(𝑠1; 𝑠2, C) = psimpl(𝑠1,𝐶); psimpl(𝑠2,𝐶)
psimpl(I(𝑒1, . . . , 𝑒𝑘 ), C) = I(𝑒1, . . . , 𝑒𝑘 )
psimpl(guard P 𝑠, C) = guard (simplify(P, C)) psimpl(𝑠,P ∩ C)
psimpl(loop P 𝑠, C) = loop (simplify(P, C)) psimpl(𝑠,P ∩ C)

Fig. 8. Simplification of a PolyLoop program

Expressions:
𝑒 ::= | 𝑐 | 𝑥

| 𝑒1 + 𝑒2
| 𝑐 · 𝑒
| ⌊𝑒/𝑐⌋ | 𝑒 mod 𝑐

| min(𝑒1, 𝑒2) | max(𝑒1, 𝑒2)

Tests:
𝑡 ::= | 𝑒1 = 𝑒2

| 𝑒1 ≤ 𝑒2
| 𝑡1 && 𝑡2
| !𝑡
| true | false

Statements:
𝑠 ::= | skip | 𝑠1;𝑠2

| I(𝑒1, . . . , 𝑒𝑘 )
| if (𝑡) 𝑠

| for (𝑖 = 𝑒1; 𝑖 < 𝑒2; 𝑖++) 𝑠

Fig. 9. Syntax of Loop

As implemented and verified in the Coq development, the simplify operation is sound but
suboptimal, owing to the fact that our emptiness test for polyhedra uses rationals (Q) instead of
integers (Z): it guarantees that a set of constraints has no solutions with rational coordinates, while
we are interested in solutions with integer coordinates. Consequently, some constraints that are
redundant in Z are kept because they are not redundant in Q. For example, in a context 𝑥 ≤ 1, the
polyhedron 𝑥 = 2𝑦 ∧ 𝑥 ≤ 0 is not simplified currently, but could be simplified to 𝑥 = 2𝑦 since 𝑥 ≤ 0
is redundant for integer points. This is suboptimal but sound.
We then define a function psimpl by the rules given in Figure 8. In effect, the constraints

carried by guard and loop constructs are collected in the current context C, while being simplified
using the simplify function. In these rules, we have omitted a slight detail: the dimension of
the context needs to increase when we get under a loop node, to account for the newly declared
variable. That detail aside, we can easily prove the theorem which interests us: if E ∈ C, then
E ⊢ (psimpl(C, 𝑠),M1) ⇓ M2 is derivable if and only if E ⊢ (𝑠,M1) ⇓ M2 is.

7 LOOP CODE GENERATION

The last step of code generation is to translate the PolyLoop intermediate language to a lower-level
language, Loop, which replaces the abstract polyhedral constructions of PolyLoop by concrete
Boolean tests and “for” loops. Figure 9 defines the syntax of Loop, and Figure 10 its semantics.
The language is structured in integer expressions, tests (Boolean expressions), and statements.
Expressions are semi-linear, as they include multiplications and divisions by constants in addition
to affine constructs. They also feature min, max and mod operators in order to express loop bounds
and guard conditions. Statements correspond to a standard structured imperative language, with
if conditionals and counted for loops. A “let” binding can be defined as syntactic sugar for a loop
with one iteration:

let 𝑥 = 𝑒 in 𝑠
def
= for (𝑥 = 𝑒; 𝑥 < 1 + 𝑒; 𝑥++) 𝑠
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Skip

E ⊢ (skip,M) ⇓ M

Seq
E ⊢ (𝑠1,M1) ⇓ M2 E ⊢ (𝑠2,M2) ⇓ M3

E ⊢ (𝑠1;𝑠2,M1) ⇓ M3

Instr
(I(eval(E, 𝑒1), . . . , eval(E, 𝑒𝑘 )),M1) ⇓I M2

E ⊢ (I(𝑒1, . . . , 𝑒𝑘 ),M1) ⇓ M2

IfTrue
eval(E, 𝑡) = true E ⊢ (𝑠,M1) ⇓ M2

E ⊢ (if (𝑡) 𝑠,M1) ⇓ M2

IfFalse
eval(E, 𝑡) = false

E ⊢ (if (𝑡) 𝑠,M) ⇓ M

ForEmpty
eval(E, 𝑒1) ≥ eval(E, 𝑒2)

E ⊢ (for (𝑖 = 𝑒1; 𝑖 < 𝑒2; 𝑖++) 𝑠,M) ⇓ M

For
eval(E, 𝑒1) < eval(E, 𝑒2) ∀𝑥 ∈ {eval(E, 𝑒1)..eval(E, 𝑒2) − 1}, (E, 𝑖 : 𝑥 ⊢ (𝑠,M𝑥 ) ⇓ M𝑥+1)

E ⊢ (for (𝑖 = 𝑒1; 𝑖 < 𝑒2; 𝑖++) 𝑠,Meval(E,𝑒1) ) ⇓ Meval(E,𝑒2)

Fig. 10. Semantics for Loop

tr(skip) = skip

tr(𝑠1; 𝑠2) = tr(𝑠1);tr(𝑠2)
tr(guard P 𝑠) = if (inside(P)) tr(𝑠)
tr(loop P 𝑠) = if (inside(P0)) for (𝑖 = 𝑒−; 𝑖 < 𝑒+; 𝑖++) tr(𝑠) (general case)
tr(loop P 𝑠) = if (inside(P ′)) let 𝑖 = 𝑒 in tr(𝑠) (if there is an equation 𝑖 = 𝑒)
tr(loop P 𝑠) = if (inside(P ′) && 𝑒 mod 𝑘 = 0) let 𝑖 = ⌊𝑒/𝑘⌋ in tr(𝑠)

(if there is an equation 𝑘𝑖 = 𝑒)

Fig. 11. Outline of the translation from PolyLoop to Loop. See the main text for auxiliary definitions.

The transformation of a PolyLoop program into a Loop program is outlined in Figure 11. It is
straightforward except for the guard and loop constructs.
A guard P 𝑠 construct is translated to a statement if (inside(P)) tr(𝑠), where tr(𝑠) is

the translation of 𝑠 and inside(P) is a Boolean expression that tests membership in P. The
expression is simply a Boolean conjunction of the linear inequalities that define P: if P0 is the
conjunction of constraints 𝑎𝑖𝑥 ≤ 𝑐𝑖 for 𝑖 = 1, . . . , 𝑛, the test inside(P) is the Boolean expression
𝑎1𝑥 ≤ 𝑐1 && · · · && 𝑎𝑛𝑥 ≤ 𝑐𝑛 .

Loops are harder to translate. Consider an instruction loop P 𝑠 . After having translated 𝑠 into
tr(𝑠), we pick a fresh name 𝑖 for the iteration variable, which corresponds to the last dimension of
P, the only dimension that is not already determined by the context. We then perform the following
steps, broadly similar to Fourier-Motzkin elimination:
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• Decompose the constraints of P (which are of the form 𝑎 · 𝑥 ≤ 𝑐) in three groups: the first
group, P0, where the coefficient of 𝑖 is zero; the second group, P+, where this coefficient is
positive; and the third group, P−, where it is negative.
• If P+ or P− contains no constraints, code generation fails, as it corresponds to an unbounded
loop.
• Each constraint 𝑢𝑖 + ∑

𝑘 𝑎𝑘𝑥𝑘 ≤ 𝑐 of P+ provides an upper bound for 𝑖: we have 𝑖 ≤ (𝑐 −∑
𝑘 𝑎𝑘𝑥𝑘 )/𝑢, thus 𝑖 ≤ ⌊(𝑐 −

∑
𝑘 𝑎𝑘𝑥𝑘 )/𝑢⌋ since 𝑖 is an integer. We want a strict upper bound,

which is given by 𝑖 < ⌊(𝑐 + 𝑢 −∑
𝑘 𝑎𝑘𝑥𝑘 )/𝑢⌋. There are several constraints, so the upper

bound is in fact the minimum of all those expressions. This is possible, since P+ contains at
least one constraint. We call the resulting expression for the upper bound 𝑒+.
• Likewise, each constraint 𝑢𝑖 +∑

𝑘 𝑎𝑘𝑥𝑘 ≤ 𝑐 in P− is equivalent to (
∑
𝑘 𝑎𝑘𝑥𝑘 − 𝑐)/(−𝑢) ≤ 𝑖 ,

thus to ⌊(∑𝑘 𝑎𝑘𝑥𝑘 − 𝑐 + (−𝑢) − 1)/(−𝑢)⌋ ≤ 𝑖 , providing a lower bound for 𝑖 . The actual lower
bound 𝑒− will then be the maximum of all these expressions, which is well-defined since P−
is nonempty.
• Generate the code if (inside(P0)) for (𝑖 = 𝑒−; 𝑖 < 𝑒+; 𝑖++) tr(𝑠).

It is relatively easy, using familiar properties of integer division, to prove that for all E:

E :: 𝑥 ∈ P ⇔ E ∈ P0 ∧ eval(E, 𝑒−) ≤ 𝑥 < eval(E, 𝑒+).

Thus, by case analysis on whether E ∈ P0 or not, we can prove that the semantics of the
generated Loop program is the same as the semantics of the initial PolyLoop program, assuming
that the semantics of 𝑠 and tr(𝑠) are the same.

To simplify the generated code, we also distinguish the case where P contains an equality on 𝑖 ,
say 𝑘𝑖 = 𝑒 . In this case, there is only one possible value of 𝑖 . We can then express all other constraints
on 𝑖 , using this equality, as a polyhedron P ′ which does not depend on 𝑖 . Then, if the coefficient 𝑘
is 1, the value of 𝑖 is simply 𝑒 , and we produce the code if (inside(P ′)) let 𝑖 = 𝑒 in tr(𝑠). If
the coefficient 𝑘 is not 1, we need to guard the computation by a divisibility check:

if (inside(P ′) && 𝑒 mod 𝑘 = 0) let 𝑖 = ⌊𝑒/𝑘⌋ in tr(𝑠)

8 COQ DEVELOPMENT

The totality of the algorithms presented above have been formalized and proved in Coq. For this
purpose, we had to develop a small library of linear algebra, define the operations we needed on
polyhedra, and prove their correctness theorems. We also had to formalize the semantics of the
various languages presented above to be able to express the correctness theorems of the code
generation.

8.1 Linear algebra

When working with vectors and matrices in a dependently-typed framework such as Coq or Agda,
it is tempting to use dependent types such as vec 𝑛 𝐴, the type of vectors of 𝐴 of dimension 𝑛, and
mat 𝑝 𝑞 𝐴, the type of 𝑝 × 𝑞 matrices of 𝐴. This is close to mathematical usage but requires many
retyping functions to be used, e.g. to convert between vec (𝑛 + 1) 𝐴 and vec (1 + 𝑛) 𝐴.
In our development, we chose to represent vectors as lists of integers, with the convention

that each list is followed by infinitely many zeros. With this convention, a list [𝑥1; . . . ;𝑥𝑘 ] can
be interpreted as a 𝑛-dimensional vector for any 𝑛: the vector is either (𝑥1, . . . , 𝑥𝑛) if 𝑛 ≤ 𝑘 , or
(𝑥1, . . . , 𝑥𝑘 , 0, . . . , 0) if 𝑛 > 𝑘 . Likewise, a matrix is just a list of vectors, with the convention that
lines not represented in the list are the all-zero vector. This simply-typed representation is a good
match for reasoning about the polyhedral model: sometimes the model forces us to consider that
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several matrices or vectors have the same dimensions by padding them with zeros if needed; this is
a no-operation in our representation.

Operations over vectors andmatrices are refreshingly easy to define and comprise vector addition,
scalar multiplication, dot product, lexicographic ordering, and matrix application. However, vectors
and matrices do not have unique representations (trailing zeros can be materialized or left implicit),
hence we need to reason up to setoid equality.
A constraint (a linear inequality) is defined as a pair of a vector and a scalar, the pair ( a, c)

representing the constraint a · 𝑥 ≤ c. A polyhedron is simply a list of constraints.

8.2 Operations on polyhedra

We also need a number of operations on polyhedra: emptiness check, intersection, canonicalization,
projection on the first𝑑 dimensions, etc. To this end, we reused the Verified Polyhedron Library (VPL)
[Boulmé et al. 2018], a mixed Coq-OCaml library that uses a posteriori certification: operations over
polyhedra are implemented efficiently in OCaml and produce Farkas-style certificates [Schrijver
1998, corollary 10.1a]; the results and their certificates are then checked by Coq functions that have
been proved (once and for all) to be sound (if the checker succeeds, the result is correct) [Fouilhé
and Boulmé 2014]. Since certificate checking may fail, most operations over polyhedra live in a
monad that supports errors and also the possibility that the OCaml implementation is not pure (e.g.
maintains internal state).
A limitation of the VPL is that most of its operations are specified by one-way implications

instead of equivalences. For example, consider the two VPL operations we use most: the emptiness
test isempty and the assume function that adds a linear constraint 𝑎𝑥 ≤ 𝑐 to a polyhedron. They
are specified by the following implications:

isempty(P) = true =⇒ P = ∅
𝑥 ∈ P ∧ 𝑎𝑥 ≤ 𝑐 =⇒ 𝑥 ∈ assume(P, 𝑎𝑥 ≤ 𝑐)

However, isempty is allowed to return false even for an empty polyhedron, and assume(P, 𝑎𝑥 ≤ 𝑐)
is allowed to return a polyhedron larger than the intersection of P with the semi-space 𝑎𝑥 ≤ 𝑐 .
This is fine for the original application for which the VPL was developed, namely as a relational
domain for static analysis by abstract interpretation: the implications that are proved are sufficient
to show the soundness of the static analysis; over-approximation in the result of the analysis is
allowed.
For the emptiness check, we can use the VPL isempty predicate directly, since the implication

proved by the VPL is the one we need. Other operations we need must be synthesized from what
the VPL provides. For example, converting a polyhedron from our representation (a list of linear
constraints 𝑎𝑖𝑥 ≤ 𝑐𝑖 for 𝑖 = 1, . . . , 𝑘) to the internal VPL representation is not trivial. We compute
P = assume(. . . assume(∅, 𝑎1𝑥 ≤ 𝑐1) . . . , 𝑎𝑘𝑥 ≤ 𝑐𝑘 ), then check that isempty(assume(P,¬(𝑎𝑖𝑥 ≤
𝑐𝑖 ))) = true for every 𝑖 = 1, . . . , 𝑘 . The VPL specifications guarantee that the exact result Q =⋂
𝑖 (𝑎𝑖𝑥 ≤ 𝑐𝑖 ) is included in P. The extra checks guarantee that P ⊆ (𝑎𝑖𝑥 ≤ 𝑐) for 𝑖 = 1, . . . , 𝑘 , from

which it follows that P ⊆ Q, hence P is the exact result Q. Of course, any of the extra check can
fail, causing the conversion to fail. The conversion is, therefore, presented as a monadic operation
in our code.
Projection of the first 𝑑 dimensions of a polyhedron is implemented by iterating the Fourier-

Motzkin elimination algorithm 𝑑 times. We proved that Fourier-Motzkin elimination is exact on Q,
which implies that it is sound on Z but can result in over-approximation, as discussed in section 5.
In the following, isExactProjection n pol proj expresses the fact that proj is the Q-projection of
pol over the dimension n. For s a positive integer and pol a polyhedron, scale_poly s pol is the
polyhedron pol, scaled s times, so that we can express membership of rational points without using
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rational numbers. The functions in_poly check membership, mult_vector multiply a vector by an
integer, and assign n k v returns the vector v where the n-th component was replaced by k.

Definition isExactProjection n (pol proj : polyhedron) :=
forall (p : list Z) ( s : Z), 0 < s →
in_poly p ( scale_poly s proj) = true↔
exists (t k : Z),
0 < t ∧
in_poly (assign n k ( mult_vector t p)) ( scale_poly (s ∗ t) pol) = true.

Theorem pure_project_in_iff :
forall n ( pol : polyhedron),
isExactProjection n pol (pure_project n pol).

The remaining polyhedral operations are those used in steps 3 and 4 of the syntax tree generation
algorithm. In order to simplify the translation function from a polyhedral program into a PolyLoop
program, these two steps have been combined inside the split_and_sort function. This function
takes as input a list of polyhedra, and splits and sorts the result into a list where each element is
a pair of a polyhedron, and the indices of the input polyhedra that contain this polyhedron. The
properties below are those that were expressed in section 5 to prove the correctness of the code
generation algorithm. The WHEN x ← e THEN notation means “if the monadic computation e succeeds
and returns value x, then . . . ”.

Lemma split_and_sort_disjoint :
forall n ( pols : list polyhedron),
WHEN out← split_and_sort n pols THEN

forall p k1 k2 ppl1 ppl2,
nth_error out k1 = Some ppl1→ nth_error out k2 = Some ppl2→
in_poly p ( fst ppl1) = true→ in_poly p (fst ppl2) = true→
k1 = k2.

Lemma split_and_sort_cover :
forall n ( pols : list polyhedron),
WHEN out← split_and_sort n pols THEN

forall p pol i,
nth_error pols i = Some pol→
in_poly p pol = true→
exists (ppl : polyhedron ∗ list nat),
In ppl out ∧ In i ( snd ppl) ∧ in_poly p (fst ppl) = true.

Lemma split_and_sort_sorted :
forall n ( pols : list polyhedron),
WHEN out← split_and_sort n pols THEN

forall k1 k2 ppl1 ppl2,
nth_error out k1 = Some ppl1→ nth_error out k2 = Some ppl2→
( k1 < k2)%nat→ canPrecede n (fst ppl1) (fst ppl2).
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8.3 Correctness theorems

There is a semantics preservation theorem for each of the code generation steps presented previously.
We only show the final theorem that results from the composition of these individual proofs:

Theorem complete_generate_many_preserve_sem :
forall es n ( pis : Poly_Program) env mem1 mem2,
( es ≤ n)%nat→
WHEN st ← complete_generate_many es n pis THEN

loop_semantics st env mem1 mem2→
length env = es →
pis_have_dimension pis n→
( forall pi, In pi pis→ (poly_nrl pi.(pi_schedule) ≤ n)%nat)→
env_poly_semantics (rev env) n pis mem1 mem2.

The hypothesis WHEN st ← complete_generate_many es n pis THEN means that the code generator
succeeds and produces the Loop program st. Several other hypotheses are mostly technical,
ensuring that the initial program is well-formed. In particular, n being the total dimension of
the input program, the two hypotheses pis_have_dimension pis n and forall pi, In pi pis→ ...
ensure that the input program does not refer to non-existing variables. Code generation is done
in an environment of fixed size, that is, where it is already decided what will be a variable and
what will be a parameter. The variable es is the size of that environment; we thus have the two
conditions length env = es, which ensures that the environment that is used has the correct size,
and ( es ≤ n)%nat, which ensures that the size of this environment is not greater than the dimension
of the input program. Under these hypotheses, we conclude that every execution of the generated
Loop program st corresponds to one of the possible executions of the initial Poly program pis.

8.4 Extraction and execution

We used Coq’s extraction facility to generate OCaml code from our Coq development and the Coq
part of the VPL. This extracted code can be linked with the rest of the VPL and a Loop printer to
produce an executable prototype of our code generator.

By lack of a concrete syntax and a parser for our input language Poly, we could only hand-code
a number of polyhedral programs taken from Bastoul [2004] and visually inspect the generated
code. We now show three such examples.

The first example, shown in Figure 12, has only one polyhedron and describes the scanning of a
𝑛 ×𝑚 rectangle. Our generator produces two nested loops corresponding to the two dimensions of
the schedule, plus two let bindings that map the schedule to points in the input polyhedron.
The second example, shown in Figure 13, has only one polyhedron and describes the scanning

of a sequence of 𝑛 instructions, but with a schedule that is not unimodular. The resulting code
contains a test with a modulo operation before executing the instruction.
The third example, shown in Figure 14 and taken from Bastoul [2004], illustrates the case of

multiple polyhedra. To avoid an unreasonable increase in the size of the produced code (which
would otherwise include numerous “let” bindings), the initial program is a polyhedral program
with lexicographic scheduling. The generated code is quite good, with innermost loops that contain
no conditionals and involve no min/max computations.
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(I, {(𝑛,𝑚, 𝑖, 𝑗) ∈ Z4 | 0 ≤ 𝑖 ≤ 𝑛 ∧ 0 ≤ 𝑗 ≤ 𝑚},
(𝑛,𝑚, 𝑖, 𝑗) ↦→ ( 𝑗, 𝑖),
(𝑛,𝑚, 𝑖, 𝑗) ↦→ (𝑖, 𝑗))

(a) Initial polyhedron

if (0 ≤ 𝑛)
for (𝑡1 = 0; 𝑡1 < 1 +𝑚; 𝑡1++)

for (𝑡2 = 0; 𝑡2 < 1 + 𝑛; 𝑡2++)

let 𝑖 = 𝑡2 in

let 𝑗 = 𝑡1 in

I(𝑖, 𝑗)

(b) Generated program

Fig. 12. Code generation for a single polyhedron

(I, {(𝑛, 𝑖) ∈ Z2 | 0 ≤ 𝑖 ≤ 𝑛},
(𝑛, 𝑖) ↦→ (2𝑖),
(𝑛, 𝑖) ↦→ (𝑖))

(a) Initial polyhedron

for (𝑡1 = 0; 𝑡1 < 1 + 2 ∗ 𝑛; 𝑡1++)

if (𝑡1 mod 2 = 0)
let 𝑖 = ⌊𝑡1/2⌋ in

I(𝑖)

(b) Generated program

Fig. 13. Code generation for a single polyhedron with modulo

9 RELATEDWORK

9.1 Verification of loop optimizations

There are two main ways to verify a compilation pass: compiler proof, where the pass is proved
once and for all to preserve semantics for all inputs; and translation validation [Pnueli et al. 1998],
where at every run of the pass the input and output codes are compared for semantic equivalence.
We are not aware of any significant loop optimization that has been verified with the compiler proof
approach. However, translation validation has been applied many times to loop optimizations.
For optimizations that mostly preserve the execution order of basic instructions, validation

can use symbolic representations of the codes plus specialized, efficient equivalence checking
algorithms. Examples include loop unrolling as handled by Necula [2000], software pipelining by
Tristan and Leroy [2010], loop-invariant code motion by Tristan et al. [2011], and loop peeling
and induction variable strength reduction by Tate et al. [2011]. In contrast, loop transformations
that completely change the evaluation order, such as permutation, fusion or tiling, require more
advanced and more costly validation techniques. Zuck et al. [2005] add permutation rules, specific to
this purpose, to the logic of their TVOC validator. Kundu et al. [2009] integrate similar permutation
rules in their parameterized equivalence checking approach. Barthe et al. [2016] use a relational
program logic that they reduce to Hoare logic via product programs. Churchill et al. [2019] automate
the product program approach using SMT solving and loop matching heuristics.
For a loop optimizer that uses the polyhedral model, it is tempting to base validation on the

polyhedral model as well: build the polyhedral representation of the optimized code and compare it
with the polyhedral representation of the initial code. This is the approach followed by Verdoolaege
et al. [2012] and by [Namjoshi and Singhania 2016]. However, this is not always possible: the
code generated by a polyhedral optimizer can contain non-affine conditional control (such as
if 𝑥 mod 2 = 0) that cannot be expressed by a polyhedral representation. Schordan et al. [2014]
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(I1, {(𝑛,𝑚, 𝑖, 𝑗) ∈ Z4 | 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝑗 = 𝑖},
(𝑛,𝑚, 𝑖, 𝑗) ↦→ (𝑖, 𝑗)),

(I2, {(𝑛,𝑚, 𝑖, 𝑗) ∈ Z4 | 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛},
(𝑛,𝑚, 𝑖, 𝑗) ↦→ (𝑖, 𝑗)),

(I3, {(𝑛,𝑚, 𝑖, 𝑗) ∈ Z4 | 0 ≤ 𝑖 ≤ 𝑚 ∧ 𝑗 = 𝑛},
(𝑛,𝑚, 𝑖, 𝑗) ↦→ (𝑖, 𝑗))

(a) Initial program

i

j

(a)

(b)

(c)

(d)

(e)

(X) (Y)

(b) Polyhedra (with 𝑛 < 𝑚). I1 is blue squares, I2 is
black dots, and I3 is red triangles.

for (𝑖 = 1; 𝑖 < min(1 + 𝑛, 1 +𝑚); 𝑖++) (X)

if (𝑛 ≤ 𝑖)
let 𝑗 = 𝑖 in (d)

I1 (𝑖, 𝑗)
I2 (𝑖, 𝑗)
I3 (𝑖, 𝑗)

if (𝑖 ≤ 𝑛 − 1)
let 𝑗 = 𝑖 in (a)

I1 (𝑖, 𝑗)
I2 (𝑖, 𝑗)

for ( 𝑗 = 𝑖 + 1; 𝑗 < 𝑛; 𝑗++) (b)

I2 (𝑖, 𝑗)
if (𝑖 ≤ 𝑛 − 1)
let 𝑗 = 𝑛 in (c)

I2 (𝑖, 𝑗)
I3 (𝑖, 𝑗)

for (𝑖 = max(1, 𝑛 + 1); 𝑖 < 1 +𝑚; 𝑖++) (Y)

let 𝑗 = 𝑛 in (e)

I3 (𝑖, 𝑗)
for (𝑖 = max(1,𝑚 + 1); 𝑖 < 1 + 𝑛; 𝑖++)

let 𝑗 = 𝑖 in

I1 (𝑖, 𝑗)
I2 (𝑖, 𝑗)

for ( 𝑗 = 𝑖 + 1; 𝑗 < 1 + 𝑛; 𝑗++)

I2 (𝑖, 𝑗)

(c) Generated code

Fig. 14. Code generation for several polyhedra, with an implicit lexicographic schedule in the initial program

investigate richer representations and equivalence checks that can account for such non-affine
control.

The approach that we follow in this paper combines compiler proof and translation validation in a
way that plays to their respective strengths. As explored by Pilkiewicz [2013], loop transformations
are performed and validated over a polyhedral representation, using only Presburger arithmetic
formulas, without a need for SMT solving or specialized decision procedures. As reported in this
paper, the final code generation step is proved semantics-preserving once and for all, avoiding
difficulties with translation validation caused by non-affine control in the generated code.
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9.2 Code generation in the polyhedral model

Early work on automatic parallelization of loop nests introduced polyhedral techniques only for
analyzing dependencies between loops: the loop nests were still represented by Abstract Syntax
Trees and optimized by rewriting these ASTs [Feautrier 1991; Lamport 1974]. Pugh [1991] and Lu
[1991] introduced the idea of representing loop nests by their polyhedral models and transforming
directly the models. This idea gave rise to a new need: synthesizing imperative code from a
polyhedral representation, an operation often called “polyhedra scanning” because it involves
enumerating all the integer points in a set of polyhedra. Ancourt and Irigoin [1991] introduced
the use of Fourier-Motzkin elimination to project the enumeration space on successive iteration
dimensions. This technique works well for a single polyhedron but produces inefficient control for
more complex spaces. Quilleré et al. [2000] showed how to avoid this inefficiency by decomposing
the enumeration space as a disjoint union of polyhedra. Bastoul [2004] further developed these
ideas, leading to the well-known CLooG code generator.

Our Coq formalization and correctness proof described in this paper follows the CLooG approach
and covers most of the techniques described in Bastoul [2004], with the notable exception of non-
unit loop strides. More recent improvements also remain to be formalized, such as those described
by Grosser et al. [2015] and by Razanajato et al. [2017]. We have not investigated the significantly
different approaches to polyhedra scanning proposed by Boulet and Feautrier [1998] and more
recently by Chen [2012].

9.3 Verified neural networks

A new application of polyhedral-based compilation appeared recently in the context of machine
learning: generating efficient low-level code implementing deep neural networks and recurrent
neural networks expressed in high-level matrix and tensor notations. For instance, polyhedral
optimization plays an important role in Tensor Comprehensions [Vasilache et al. 2019] and in
Tiramisu [Baghdadi et al. 2019]. In parallel, the formal verification of neural networks is making
progress, with newmethodologies and tools such as Reluplex [Katz et al. 2017] and DeepPoly [Singh
et al. 2019]. This is a strong incentive to formally verify the optimizers and code generators that
produce the actual implementations of these neural networks, as a way to ensure that the properties
formally verified at the level of the neural network carry over to the actual implementation.

10 CONCLUSIONS AND FUTUREWORK

The work described in this paper is the first formal verification of a relatively sophisticated poly-
hedral code generator, broadly similar to those used in production compilers. The verification
combines linear algebra with semantic reasoning in interesting ways. It exposed one oversight in
the literature: the loop generation algorithm of Quilleré et al. [2000] can fail in the case where the
projection of a polyhedron produces three or more disjoint polyhedra, because it is not always
possible to order these polyhedra in a way that enforces the desired execution order. It is good to
know about this limitation, even though we do not know whether the problematic case can show
up in practice with production optimizers such as Graphite and Polly.
Several ideas from Bastoul [2004] remain to be implemented and verified. This includes the

generation of stride loops, where, at each iteration, the loop index is incremented by a stride 𝑠 > 1.
Additional simplifications are also possible at the PolyLoop level.

The next step in code generation is to produce actual C code (or CompCert Clight code) instead
of stopping at the Loop language. The main challenge is to deal with arithmetic overflow in index
computations. Loop uses exact, arbitrary-precision arithmetic to compute array indices, polyhedron
membership, and loop bounds, while performance demands that we use fixed-precision machine
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arithmetic. Machine arithmetic can overflow, causing undefined behaviors or incorrect results.
Cuervo Parrino et al. [2012] propose an elegant solution to this problem: static analysis of the
polyhedral program produces a Boolean condition that, when true, guarantees the absence of
overflows in the whole program. They suggest to evaluate the condition at run-time, branching to
the optimized, generated loop nest if true, and to the original, unoptimized loop nest if false.
Finally, to test the performance of the generated code and fine-tune the code generation algo-

rithms, it would be nice to connect our code generator with an existing front-end that produces
polyhedral models.
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APPENDIX

A CYCLES IN THE LEXICOGRAPHIC ORDERING GRAPH

Consider the following three disjoint polyhedra:
P1 = {(𝑥,𝑦, 𝑧) ∈ Z3 | 𝑥 = 0 ∧ 𝑦 = 𝑧 ∧ 0 ≤ 𝑧 ≤ 1}

= {(0, 0, 0), (0, 1, 1)}
P2 = {(𝑥,𝑦, 𝑧) ∈ Z3 |𝑦 = 0 ∧ 𝑥 = 1 − 𝑧 ∧ 0 ≤ 𝑧 ≤ 1}

= {(1, 0, 0), (0, 0, 1)}
P3 = {(𝑥,𝑦, 𝑧) ∈ Z3 | 𝑥 = 1 − 𝑦 ∧ 𝑥 = 𝑧 ∧ 0 ≤ 𝑧 ≤ 1}

= {(0, 1, 0), (1, 0, 1)}
Suppose those three polyhedra are the result of step 2 of the algorithm. Since they are disjoint,

they also are the result of step 3. In step 4, the lexicographic ordering graph contains a cycle.
Indeed, we have (0, 0, 0) ∈ P1 and (0, 0, 1) ∈ P2, thus the loop for P1 must precede the loop for
P2. Likewise, P2 ∋ (1, 0, 0) ≺ (1, 0, 1) ∈ P3, hence the loop for P2 must precede the loop for P3,
which itself must precede the loop for P1 because P3 ∋ (0, 1, 0) ≺ (0, 1, 1) ∈ P1. Therefore, the
three loops cannot be ordered. This problem is reminescent of the failure case of the painter’s
algorithm in computer graphics, and the solutions used there (splitting the polygons) could also be
used in our case. However, while this shows the three loops cannot be ordered, the previous steps
in the generation algorithm often prevent the problem from happening. In our case, the problem
would only manifest itself if we have these three polyhedra and only 𝑥 and 𝑦 were parameters,
while 𝑧 was not. We have not yet seen cases where the problem happens after the first step of the
generation, and we suspect it cannot happen; however, we did not formally prove it, and did not
find justification for it in the literature.
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