
Towards an efficient and formally verified convertibility
checker

Nathanaëlle Courant

September 19, 2024

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 1 / 34

Introduction

Computing normal forms

Testing convertibility

Putting it all together

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 1 / 34

Computation

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s see how we can compute, for instance, f(1, 27 · 31).

Bad: Good:
f(1, 27 · 31) = f(1, 837) f(1, 27 · 31) = (1− 1)(27 · 31 + 1)

= (1− 1)(837 + 1) = 0 · (27 · 31 + 1)

= 0 · (837 + 1) = 0

= 0

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 2 / 34

Computation

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s see how we can compute, for instance, f(1, 27 · 31).

Bad:

Good:

f(1, 27 · 31) = f(1, 837)

f(1, 27 · 31) = (1− 1)(27 · 31 + 1)

= (1− 1)(837 + 1) = 0 · (27 · 31 + 1)

= 0 · (837 + 1) = 0

= 0

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 2 / 34

Computation

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s see how we can compute, for instance, f(1, 27 · 31).

Bad:

Good:

f(1, 27 · 31) = f(1, 837)

f(1, 27 · 31) = (1− 1)(27 · 31 + 1)

= (1− 1)(837 + 1)

= 0 · (27 · 31 + 1)

= 0 · (837 + 1) = 0

= 0

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 2 / 34

Computation

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s see how we can compute, for instance, f(1, 27 · 31).

Bad:

Good:

f(1, 27 · 31) = f(1, 837)

f(1, 27 · 31) = (1− 1)(27 · 31 + 1)

= (1− 1)(837 + 1)

= 0 · (27 · 31 + 1)

= 0 · (837 + 1)

= 0

= 0

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 2 / 34

Computation

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s see how we can compute, for instance, f(1, 27 · 31).

Bad:

Good:

f(1, 27 · 31) = f(1, 837)

f(1, 27 · 31) = (1− 1)(27 · 31 + 1)

= (1− 1)(837 + 1)

= 0 · (27 · 31 + 1)

= 0 · (837 + 1)

= 0

= 0

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 2 / 34

Computation

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s see how we can compute, for instance, f(1, 27 · 31).

Bad: Good:
f(1, 27 · 31) = f(1, 837) f(1, 27 · 31) = (1− 1)(27 · 31 + 1)

= (1− 1)(837 + 1)

= 0 · (27 · 31 + 1)

= 0 · (837 + 1)

= 0

= 0

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 2 / 34

Computation

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s see how we can compute, for instance, f(1, 27 · 31).

Bad: Good:
f(1, 27 · 31) = f(1, 837) f(1, 27 · 31) = (1− 1)(27 · 31 + 1)

= (1− 1)(837 + 1) = 0 · (27 · 31 + 1)

= 0 · (837 + 1)

= 0

= 0

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 2 / 34

Computation

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s see how we can compute, for instance, f(1, 27 · 31).

Bad: Good:
f(1, 27 · 31) = f(1, 837) f(1, 27 · 31) = (1− 1)(27 · 31 + 1)

= (1− 1)(837 + 1) = 0 · (27 · 31 + 1)

= 0 · (837 + 1) = 0

= 0

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 2 / 34

Computation, a different case

Let f : x 7→ x · (100− x).
Let’s compute f(7 · 13− 1).

Bad: Good:
f(7 · 13− 1) f(7 · 13− 1)

= (7 · 13− 1)(100− (7 · 13− 1)) = f(91− 1)

= (91− 1)(100− (7 · 13− 1)) = f(90)

= 90 · (100− (7 · 13− 1)) = 90 · (100− 90)

= 90 · (100− (91− 1)) = 90 · 10
= 90 · (100− 90) = 900

= 90 · 10
= 900

This time it was better to compute the argument first!
Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 3 / 34

Computation, a different case

Let f : x 7→ x · (100− x).
Let’s compute f(7 · 13− 1).

Bad:

Good:

f(7 · 13− 1)

f(7 · 13− 1)

= (7 · 13− 1)(100− (7 · 13− 1))

= f(91− 1)

= (91− 1)(100− (7 · 13− 1)) = f(90)

= 90 · (100− (7 · 13− 1)) = 90 · (100− 90)

= 90 · (100− (91− 1)) = 90 · 10
= 90 · (100− 90) = 900

= 90 · 10
= 900

This time it was better to compute the argument first!
Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 3 / 34

Computation, a different case

Let f : x 7→ x · (100− x).
Let’s compute f(7 · 13− 1).

Bad:

Good:

f(7 · 13− 1)

f(7 · 13− 1)

= (7 · 13− 1)(100− (7 · 13− 1))

= f(91− 1)

= (91− 1)(100− (7 · 13− 1))

= f(90)

= 90 · (100− (7 · 13− 1))

= 90 · (100− 90)

= 90 · (100− (91− 1)) = 90 · 10
= 90 · (100− 90) = 900

= 90 · 10
= 900

This time it was better to compute the argument first!
Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 3 / 34

Computation, a different case

Let f : x 7→ x · (100− x).
Let’s compute f(7 · 13− 1).

Bad:

Good:

f(7 · 13− 1)

f(7 · 13− 1)

= (7 · 13− 1)(100− (7 · 13− 1))

= f(91− 1)

= (91− 1)(100− (7 · 13− 1))

= f(90)

= 90 · (100− (7 · 13− 1))

= 90 · (100− 90)

= 90 · (100− (91− 1))

= 90 · 10

= 90 · (100− 90)

= 900

= 90 · 10
= 900

This time it was better to compute the argument first!
Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 3 / 34

Computation, a different case

Let f : x 7→ x · (100− x).
Let’s compute f(7 · 13− 1).

Bad:

Good:

f(7 · 13− 1)

f(7 · 13− 1)

= (7 · 13− 1)(100− (7 · 13− 1))

= f(91− 1)

= (91− 1)(100− (7 · 13− 1))

= f(90)

= 90 · (100− (7 · 13− 1))

= 90 · (100− 90)

= 90 · (100− (91− 1))

= 90 · 10

= 90 · (100− 90)

= 900

= 90 · 10
= 900

This time it was better to compute the argument first!
Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 3 / 34

Computation, a different case

Let f : x 7→ x · (100− x).
Let’s compute f(7 · 13− 1).

Bad: Good:
f(7 · 13− 1) f(7 · 13− 1)

= (7 · 13− 1)(100− (7 · 13− 1)) = f(91− 1)

= (91− 1)(100− (7 · 13− 1)) = f(90)

= 90 · (100− (7 · 13− 1))

= 90 · (100− 90)

= 90 · (100− (91− 1))

= 90 · 10

= 90 · (100− 90)

= 900

= 90 · 10
= 900

This time it was better to compute the argument first!
Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 3 / 34

Computation, a different case

Let f : x 7→ x · (100− x).
Let’s compute f(7 · 13− 1).

Bad: Good:
f(7 · 13− 1) f(7 · 13− 1)

= (7 · 13− 1)(100− (7 · 13− 1)) = f(91− 1)

= (91− 1)(100− (7 · 13− 1)) = f(90)

= 90 · (100− (7 · 13− 1)) = 90 · (100− 90)

= 90 · (100− (91− 1))

= 90 · 10

= 90 · (100− 90)

= 900

= 90 · 10
= 900

This time it was better to compute the argument first!
Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 3 / 34

Computation, a different case

Let f : x 7→ x · (100− x).
Let’s compute f(7 · 13− 1).

Bad: Good:
f(7 · 13− 1) f(7 · 13− 1)

= (7 · 13− 1)(100− (7 · 13− 1)) = f(91− 1)

= (91− 1)(100− (7 · 13− 1)) = f(90)

= 90 · (100− (7 · 13− 1)) = 90 · (100− 90)

= 90 · (100− (91− 1)) = 90 · 10
= 90 · (100− 90) = 900

= 90 · 10
= 900

This time it was better to compute the argument first!
Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 3 / 34

Equality, up to computation

Let f : x 7→ 2x.
Let’s prove f(20) = f(19 + 1).

First idea: let’s compute both sides.

f(20) = 220 f(19 + 1) = 219+1

= 1048576 = 220

= 1048576

Costly: we computed 220 on both sides, which was expensive.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 4 / 34

Equality, up to computation

Let f : x 7→ 2x.
Let’s prove f(20) = f(19 + 1).

Second idea: if x = y, then f(x) = f(y), so we only need to prove
20 = 19 + 1.

20 = 20 19 + 1 = 20

That’s it, cheap computations only!

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 4 / 34

Equality, up to computation: the bad case

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s prove f(1, 27 · 31) = f(1, 19 · 47).

Let’s do as before, and prove 1 = 1 and 27 · 31 = 19 · 47.

27 · 31 = 837 19 · 47 = 893

They are different, so this didn’t work!

We need to unfold f and compute
both sides. We already computed both arguments so we don’t need to
compute them again:

f(1, 837) = (1− 1)(837 + 1) f(1, 893) = (1− 1)(893 + 1)

= 0 · (837 + 1) = 0 · (893 + 1)

= 0 = 0

We still computed 27 · 31 and 19 · 47: expensive.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 5 / 34

Equality, up to computation: the bad case

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s prove f(1, 27 · 31) = f(1, 19 · 47).

Let’s do as before, and prove 1 = 1 and 27 · 31 = 19 · 47.

27 · 31 = 837 19 · 47 = 893

They are different, so this didn’t work! We need to unfold f and compute
both sides. We already computed both arguments so we don’t need to
compute them again:

f(1, 837) = (1− 1)(837 + 1) f(1, 893) = (1− 1)(893 + 1)

= 0 · (837 + 1) = 0 · (893 + 1)

= 0 = 0

We still computed 27 · 31 and 19 · 47: expensive.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 5 / 34

Equality, up to computation: the bad case

Let f : (x, y) 7→ (x− 1)(y + 1).
Let’s prove f(1, 27 · 31) = f(1, 19 · 47).

Instead, let’s unfold f first.

f(1, 27 · 31) = (1− 1)(27 · 31 + 1) f(1, 19 · 47) = (1− 1)(19 · 47 + 1)

= 0 · (27 · 31 + 1) = 0 · (19 · 47 + 1)

= 0 = 0

A lot better! But how to know which we should do?
Short answer: we don’t, so rely on heuristics (previous works). . .
or do it in parallel (this thesis)!

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 5 / 34

Proof and computation

Suppose we want to prove that 1 + 1 = 2.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 6 / 34

Proof and computation

Suppose we want to prove that 1 + 1 = 2.

Russel & Whitehead, Principia Mathematica, Vol. I (1910), p. 379

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 6 / 34

Proof and computation

Suppose we want to prove that 1 + 1 = 2.

More than 300 pages of dense, abstract proofs.
⇒ Can be do better?

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 6 / 34

Proof and computation

Suppose we want to prove that 1 + 1 = 2.

More than 300 pages of dense, abstract proofs.
⇒ Can be do better?

Yes! Proof by computation.
Computation: 1 + 1 is 2, so 1 + 1 = 2.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 6 / 34

Proof and computation

Suppose we want to prove that 1 + 1 = 2.

La « vérification » diffère précisément de la véritable démonstra-
tion, parce qu’elle est purement analytique et parce qu’elle est
stérile.

– H. Poincaré, 1894

Computation, and equality up to computation, is pure verification: it does
not need any ideas.
But it can be can be efficient or not. . .

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 6 / 34

Proof assistants

What is a proof assistant?
Tool able to check that proofs (or programs) are correct
Necessary to specify both statements and proofs; tool checks that the
proof is indeed a proof of the statement
Proofs need to be extremely detailed compared to standard
mathematical proofs

Computation is a single proof step =⇒ smaller proofs

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 7 / 34

Goals for this work

Efficient convertibility test:
Interactivity of proof assistants: response time is important
We want worst-case reasonable: time scale ≈ 0.1s

Trustworthy convertibility test:
Part of the trusted code base
Formal verification of the convertibility test is in order

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 8 / 34

Computation model

What do we need in our computation model?

Functions λx.t and function application f x

Defined constants c each with a definition t

For instance: f
def
= λx.λy. mul (sub x 1) (add y 1)

In practice: Coq supports more constructs such as inductive datatypes, so
we do too.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 9 / 34

Computation model

What do we need in our computation model?
Functions λx.t and function application f x

Defined constants c each with a definition t

For instance: f
def
= λx.λy. mul (sub x 1) (add y 1)

In practice: Coq supports more constructs such as inductive datatypes, so
we do too.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 9 / 34

Computation model

What do we need in our computation model?
Functions λx.t and function application f x

Defined constants c each with a definition t

For instance: f
def
= λx.λy. mul (sub x 1) (add y 1)

In practice: Coq supports more constructs such as inductive datatypes, so
we do too.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 9 / 34

Computation model

What do we need in our computation model?
Functions λx.t and function application f x

Defined constants c each with a definition t

For instance: f
def
= λx.λy. mul (sub x 1) (add y 1)

In practice: Coq supports more constructs such as inductive datatypes, so
we do too.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 9 / 34

Computation model

What do we need in our computation model?
Functions λx.t and function application f x

Defined constants c each with a definition t

For instance: f
def
= λx.λy. mul (sub x 1) (add y 1)

In practice: Coq supports more constructs such as inductive datatypes, so
we do too.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 9 / 34

Formal statement

λ-calculus with defined constants c, each constant is associated to a term.

Two rules:
β-reduction: (λx.t1) t2 →β t1[x := t2]

δ-reduction: if c has definition t, then c →δ t

Convertibility test: are two terms βδ-equivalent?

Hypothesis: only strongly-normalizing terms =⇒ decidability.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 10 / 34

Introduction

Computing normal forms

Testing convertibility

Putting it all together

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 10 / 34

Strong call-by-need

Efficiency: we want to reduce each subterm at most once, and only if
it is needed (call-by-need)
=⇒ for instance f(1, 27 · 31) as seen before

Open call-by-need: call-by-need with free variables
=⇒ for instance, f(3, x) where x is free has normal form:
mul 2 (add x 1)

Strong call-by-need as iterated open call-by-need: we traverse the
term, and compute recursively the normal form of each λ-abstraction
by applying it to a free variable; need to avoid duplication of work in
this step
=⇒ for instance λx.f(3, x) is in weak but not strong normal form,
which is λx.mul 2 (add x 1)

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 11 / 34

Weak call-by-need evaluation

Evaluation is implemented with a stack in the style of Krivine’s machines:

eval t e = reduce t e []

@

@

@

t[e] s1

sn−1

sn

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 12 / 34

Weak call-by-need evaluation

Two operations: building the stack and applying a value to the stack.

reduce (t u) e s = reduce t e (lazy (eval u e) :: s)

reduce (λx.t) e s = apply ⟨x, t, e⟩ s
reduce x e s = apply (force e(x)) s

apply ⟨x, t, e⟩ (v :: s) = reduce t (e+ x 7→ v) s

apply ⟨x, t, e⟩ [] = ⟨x, t, e⟩

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 13 / 34

Encoding in a process calculus

Channels α, β, . . .

Processes P ::= ᾱ(M) reduce M to a value and send it on α

| C[α?] read a value v from α, continue with C[v]

| P1 ∥ P2 execute P1 and P2 concurrently
| να.P generate fresh channel name α

Communication rule:

C[α?] ∥ ᾱ(v) → C[v] ∥ ᾱ(v)

Channels and processes are used to represent non-strict evaluation:

C[lazy M] ≈ να. (C[α] ∥ ᾱ(M)) force α ≈ α?

Scheduler enforces laziness: in ᾱ(M), M does not reduce until α is forced.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 14 / 34

Weak call-by-need, process calculus style

ᾱ(reduce (t u) e s) → νβ.ᾱ(reduce t e (β :: s)) ∥ β̄(reduce u e [])

ᾱ(reduce (λx.t) e s) → ᾱ(apply ⟨x, t, e⟩ s)
ᾱ(reduce x e s) → ᾱ(apply (e(x)) s)

ᾱ(apply β s) → ᾱ(apply β? s)

ᾱ(apply ⟨x, t, e⟩ (v :: s)) → ᾱ(reduce t (e+ x 7→ v) s)

ᾱ(apply ⟨x, t, e⟩ []) → ᾱ(⟨x, t, e⟩)

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 15 / 34

Extending to open call-by-need

New type of (weak) normal forms/values: terms stuck on a free variable in
application position, for instance x 1 2

Values: closures ⟨x, t, e⟩ or application of a variable to a stack [x s]

New rules:

ᾱ(reduce x e s) → ᾱ(apply [x] s) if x /∈ dom(e)

ᾱ(apply [x s1] s2) → ᾱ([x (s1 ++ s2)])

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 16 / 34

Strong call-by-need is iterated open call-by-need

Idea: iterate over the weak normal form, evaluating the body of any
function.

Example: λx.f(3, x), already in weak head normal form: generate fresh y,
reduce f(3, y) to normal form mul 2 (add y 1), result is:

λy. mul 2 (add y 1)

Problem: need to be careful to avoid loss of sharing! For instance in
(λf.zff) (λx.t), need to avoid duplicating the normalisation of t.

Solution: prepare to compute the normal form of the λ-abstraction when
creating the value.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 17 / 34

Strong call-by-need is iterated open call-by-need

Idea: iterate over the weak normal form, evaluating the body of any
function.

Example: λx.f(3, x), already in weak head normal form: generate fresh y,
reduce f(3, y) to normal form mul 2 (add y 1), result is:

λy. mul 2 (add y 1)

Problem: need to be careful to avoid loss of sharing! For instance in
(λf.zff) (λx.t), need to avoid duplicating the normalisation of t.

Solution: prepare to compute the normal form of the λ-abstraction when
creating the value.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 17 / 34

Strong call-by-need: evaluation rules

Function closures are now ⟨x, t, e, y, β⟩ where β corresponds to the delayed
evaluation of t[x := y]
=⇒ λy.β? corresponds to the normal form of the closure.

Modified rule for evaluation of reduce:

ᾱ(reduce (λx.t) e s) → νβ. ᾱ(apply ⟨x, t, e, y, β⟩ s)
∥ β̄(reduce t (e+ x 7→ [y]) s)

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 18 / 34

Defined constants

Constant c, with definition t.

New type of value [c s]@β: constant c applied to stack s.
β is a channel for the evaluation of t s, after unfolding c.

New rules:

ᾱ(reduce c e s) → νβ. ᾱ(apply [c []]@β s) ∥ β̄(reduce t [] [])

ᾱ(apply [c s1]@β s2) → νγ. ᾱ([c (s1 ++ s2)]@γ) ∥ γ̄(apply β s2)

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 19 / 34

Introduction

Computing normal forms

Testing convertibility

Putting it all together

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 19 / 34

Testing convertibility, the easy way

We have strong normalisation and
confluence: just reduce both sides to
normal form and compare the normal
forms.

t1 t2

n1 n2

norm. norm.

convertible?

equal?

Computing the normal forms can be a lot of work! Sometimes we can
conclude non-convertibility after computing the weak head normal forms
only. For instance: x t ̸≡ λy.u for all t, u.

Idea: we can mix the reduction and the comparison steps! That way,
reduction of subterms happens only if necessary.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 20 / 34

Testing convertibility, incrementally

Convertibility test conv v1 v2 ξ between v1 and v2, using ξ as a mapping
between free variables.

νβγ. ᾱ(conv β γ []) ∥ β̄(reduce t1 [] []) ∥ γ̄(reduce t2 [] [])

=⇒ convertibility test between t1 and t2, sending the result to α

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 21 / 34

New rules

For pure λ-calculus:

ᾱ(conv β v2 ξ) → ᾱ(conv β? v2 ξ)

ᾱ(conv v1 β ξ) → ᾱ(conv v1 β? ξ)

ᾱ(conv ⟨x1, t1, e1, y1, v1⟩ ⟨x2, t2, e2, y2, v2⟩ ξ) →
ᾱ(conv v1 v2 ((y1, y2) :: ξ))

ᾱ(conv [x u1 . . . un] [y v1 . . . vn] ξ) → νβ1 . . . βn.

ᾱ (ξ(x) = y ∧ β1? ∧ · · · ∧ βn?)

∥
n∥∥

i=1

β̄i(conv ui vi ξ)

ᾱ(conv v1 v2 ξ) → ᾱ(false)

all other cases

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 22 / 34

Short-circuiting operators

We need short-circuiting “and” for early failure when comparing stacks:
α? ∧ false → false, without waiting for α

For constants, we will need two other operators 8 and −→∨ :

A 8 B is equal to A but assumes A = B, so short-circuits as soon as
either A or B is computed.

A
−→∨B is A ∨B but assumes A ⇒ B: short-circuits if A evaluates to

⊤ or if B is computed.

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 23 / 34

Rules for convertibility of constants

If only one head is a constant, unfold it.
If both heads are constants, we can unfold either and get the same result in
any case: use the 8 operator to produce a result as soon as possible.

ᾱ(conv [c s]@β v2 ξ) → ᾱ(conv β v2 ξ) if v2 not a constant

ᾱ(conv v1 [c s]@β ξ) → ᾱ(conv v1 β ξ) if v1 not a constant

ᾱ(conv [c1 s1]@β [c2 s2]@γ ξ) → νδη. ᾱ(δ? 8 η?)

∥ δ̄(conv [c1 s1]@β γ ξ)

∥ η̄(conv β [c2 s2]@γ ξ)

if c1 ̸= c2 or |s1| ≠ |s2|

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 24 / 34

Rules for convertibility of constants (cont.)

If both heads are the same constant with the same number of arguments,
we can also compare the stacks, like with free variables! However terms
may be convertible even if the stacks are not, so use −→∨ .

ᾱ(conv [c u1 . . . un]@β [c v1 . . . vn]@γ ξ) → νδηζ1 . . . ζn.

ᾱ

((
n∧

i=1

ζi?

)
−→∨ (δ? 8 η?)

)
∥ δ̄(conv [c u1 . . . un]@β γ ξ)

∥ η̄(conv β [c v1 . . . vn]@γ ξ)

∥
n∥∥

i=1

ζ̄i(conv ui vi ξ)

=⇒ exploration of a proof tree!

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 25 / 34

Introduction

Computing normal forms

Testing convertibility

Putting it all together

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 25 / 34

Proof tree

c t1 t2 = c u1 u2

−→∨

∧

t1 = u1 t2 = u2

8

c t1 t2 = b

a = b

a = c u1 u2

a = b

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 26 / 34

Sharing of convertibility computations

With above rules: potential exponential number of convertibility
threads due to the unfolding rules
Limit to only one thread for each pair of computations (v1, v2) with a
hashconsing-like map
ξ is not needed in the indexing: always the same mapping for the
variables that are free for a given pair (v1, v2)!
Only a O(n2) convertibility threads for n reduction steps

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 27 / 34

Thread scheduling

Lazy values must not be reduced be-
fore they are needed
=⇒ maintain a list of active threads

Simple round-robin scheduling of
active threads
=⇒ ensures fairness

A thread is needed if it is toplevel
or there is at least another needed
thread waiting for it, active if
needed and can perform reductions
No cost for lazy values after creation!
Threads maintain a list of threads to wake up when they finish

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 28 / 34

Scheduling

Convertibility rules can remove dependencies on convertibility
subthreads
The hnf of some values might be no longer needed
Remove convertibility subthreads from the list of threads waiting on a
value
If waiting list becomes empty: remove thread from active list,
recursively remove it from waiting list of other threads if applicable
Thread needs to remain in the current state in case the value is
needed again!
All operations in O(1) with doubly-linked lists

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 29 / 34

Complexity of convertibility

✔

If there exists a proof of size n, it will be found at depth at most n
Branching factor of reduction threads bounded by c

At depth n: at most O(cn) reduction threads, O(c2n) convertibility
threads
Proof can be found in exponential time of its size (better than Coq)
In practice: increase in number of threads is small due to sharing

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 30 / 34

More in the manuscript: Coq formalisation

Proof of correctness of the reduction machine with respect to
β-reduction, and for convertibility
Extensions to support constructors and (shallow) pattern matching
No implementation of sharing of convertibility threads or active thread
management (non-deterministic semantics)
=⇒ no proof of complexity
Proof size: ≈ 10k lines

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 31 / 34

More in the manuscript: a virtual machine

Faster than interpretation
Ideas from OCaml and from Coq (vm_compute) for further efficiency
Explicit handling of active threads

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 32 / 34

Conclusions

Main results:
New algorithm for testing convertibility of λ-terms with definitions and
constructors
Worst-case bounds on complexity depending on proof size
Formulated as a machine compatible with compilation
Formalized and verified in Coq

Take-home messages:
Complexity of reduction and convertibility matters
Viewing convertibility algorithms as proof search strategies

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 33 / 34

Future work

Extend to other features of Coq: cofixpoints, universes, SProp. . .

Implement virtual machine

Think about native compilation and parallelization

Improved scheduling of threads

Producing and replaying proof traces

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 34 / 34

Experimental evaluation

Testcase Coq Ours Ours2
test1 3e-5 5e-5 6e-3
test1c 1e-5 5e-5 6e-5
test2 0.14 5e-6 2e-5
test3 9e-5 2e-4 5e-5
test4 0.018 0.013 9e-5
test5 4e-6 6e-6 8e-6
test6 0.61 1e-6 8e-6
test7 3e-5 7e-5 2e-4
test8 0.078 5e-5 2e-4
test9 2e-5 6e-5/0.18∗ 0.15

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 34 / 34

Optimality of call-by-need

Call-by-need: the same redex is reduced at most once, and only if it is
needed
What does this mean?

same redex needs to be properly defined: different definitions of
optimality depending on this definition
only if it is needed: every reduction path from the input term to a
normal form reduces this redex at least once
in our case: we want to be able to further compile terms, so no
reductions under a λ-abstraction except to compute its normal form
Definition of same redex: all λ-abstractions outside the redex have
been applied to the same arguments

Prevents reducing under the body then applying: two different redexes
But allows reducing the body to compute a normal form for strong
call-by-need: the λ-abstraction is applied to a free variable when
computing the normal form

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 34 / 34

Most difficult parts of the proof

For values ⟨x, t, e, y, v⟩, where (λx.t, e) is read as t1 and λy.v as t2,
we only prove t1 ≡ t2: t1 →∗ t2 is true but a lot more complicated to
prove
Proving that reducing a thread does not affect the readback of other
threads
Readback has to be specified by a large inductive relation with several
nested recursive cases (through Forall2 for instance), too large to
write custom induction principle by hand

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 34 / 34

Machine reduction rules: base

Threads Active

(r 7→ R (Lazy(c2); c1, e, a, π, s,W)) ⋆ T r :: A

(r 7→ R (c1, e, a, rf :: π, s,W)) ⋆ (rf 7→ R (c2, e, ∅, [], [], [])) ⋆ T A :: r

(r 7→ R (Var(i); c, e, a, π, s,W)) ⋆ T r :: A

(r 7→ R (c, e, e(i), π, s,W)) ⋆ T A :: r

(r 7→ R (Abs(c1); c2, e, a, π, s,W)) ⋆ T r :: A

(r 7→ R (c2, e, (c1, e, y, rf), π, s,W))⋆

(rf 7→ R (c1, (Accu, [], y, ∅) :: e, ∅, [], [], [])) ⋆ T
A :: r

(r 7→ R (Ret, e, v, π, c :: s,W)) ⋆ T r :: A

(r 7→ R (c, e, v, π, s,W)) ⋆ T A :: r

(r 7→ R (Ret, e, v, π, [],W)) ⋆ T r :: A

(r 7→ D v) ⋆ T A++W

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 34 / 34

Machine reduction rules: forcing

Threads Active

(r 7→ R (Force; c, e, v¬r, π, s,W)) ⋆ T r :: A

(r 7→ R (c, e, v¬r, π, s,W)) ⋆ T A :: r

(r 7→ R (Force; c, e, r2, π, s,W)) ⋆ (r2 7→ D v) ⋆ T r :: A

(r 7→ R (c, e, v, π, s,W)) ⋆ (r2 7→ D v) ⋆ T A :: r

(r 7→ R (Force; c, e, r2, π, s,W))⋆

(r2 7→ R (c, e2, a2, π2, s2, [])) ⋆ T
r :: A

(r 7→ R (Force; c, e, r2, π, s,W))⋆

(r2 7→ R (c, e2, a2, π2, s2, r :: [])) ⋆ T
A :: r2

(r 7→ R (Force; c, e, r2, π, s,W))⋆

(r2 7→ R (c, e2, a2, π2, s2,W2)) ⋆ T
r :: A

(r 7→ R (Force; c, e, r2, π, s,W))⋆

(r2 7→ R (c, e2, a2, π2, s2, r :: W2)) ⋆ T
A

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 34 / 34

Machine reduction rules: application

Threads Active

(r 7→ R (App; c1, e, (c2, e2, y, v1), v2 :: π, s,W)) ⋆ T r :: A

(r 7→ R (c2, v2 :: e2, (y, v1), π, c1 :: s,W)) ⋆ T A :: r

(r 7→ R (Accu, e, (x, ∅), π, c1 :: s,W)) ⋆ T r :: A

(r 7→ R (c1, e, (Accu, e, x, ∅), π, s,W)) ⋆ T A :: r

(r 7→ R (AccuConst, e, (c, v1), π, c1 :: s,W)) ⋆ T r :: A

(r 7→ R (c1, e, (AccuConst, e, c, rf), π, s,W))⋆

(rf 7→ R (App;Ret, e, v1, e(0) :: [], [], [])) ⋆ T
A :: r

Nathanaëlle Courant Efficient verified convertibility checking September 19, 2024 34 / 34

	Introduction
	Computing normal forms
	Testing convertibility
	Putting it all together

