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Résumé

Le test de convertibilité, qui vérifie si deux λ-termes sont égaux à β-réduction près,
est une partie essentielle de la vérification de types et de preuves dans les assistants
de preuve basés sur la théorie des types, comme Coq, Agda et Lean. Naturellement, la
correction d’un tel test est nécessaire pour s’assurer que les preuves ainsi vérifiées sont
valides ; mais avoir un test efficace est également requis à la fois pour une interaction
en temps réel avec l’utilisateur, ainsi que pour la recherche de preuve. Dans cette thèse,
nous commençons par proposer une sémantique à grands pas efficace pour l’évaluation
forte paresseuse, qui est l’élément critique pour implanter un test de convertibilité de
manière classique. Cette sémantique est presque mécaniquement dérivée à partir de la
sémantique à petits pas de réduction externe gauche du λ-calcul, en la convertissant
en sémantique à grands pas, ajoutant des environnements pour éviter les substitutions,
et mémoïsant les évaluations. Des lemmes dits de transfert permettent de partager des
calculs qui ne sont pas immédiatement redondants. Nous montrons ensuite comment
nous pouvons améliorer cela en considérant le test de convertibilité dans sa globalité,
en le voyant comme de la recherche de preuve. Pour cela, nous étudions ce qui peut
être considéré comme une preuve de (non-)convertibilité, en se basant sur les travaux
existants. Cela donne lieu à un nouvel algorithme parallèle et sans heuristiques, qui ne
duplique pas les calculs et vient avec des garanties de complexités dans le pire des cas.
Nous avons dérivé une machine virtuelle de cet algorithme, et l’avons rendue plus efficace
en suivant Grégoire et Leroy, montrant que notre algorithme est adapté à la compilation
des λ-termes en entrée pour plus d’efficacité. Cette sémantique à grands pas et ce test de
convertibilité parallèle ont été implémentés en OCaml et validés expérimentalement, et se
révèlent significativement plus performants que Coq dans certains cas. Ils ont également
été tous les deux formalisés et vérifiés en Coq, augmentant la confiance en nos travaux.

Abstract

The convertibility test, which checks if two λ-terms are equal up to β-reduction, is an
essential part of typechecking and proof verification in proofs assistants based on type
theory, such as Coq, Agda and Lean. Naturally, the correctness of such a test is necessary
to ensure the proofs thus verified are valid; but having an efficient test is also required
both for real-time interaction with the user, and for proof search. In this thesis, we
start by proposing an efficient, strong call-by-need, big-step semantics for the λ-calculus,
which is the critical building block to implement a convertibility test in a classical man-
ner. This semantics is almost mechanically derived from the semantics of small-step
leftmost-outermost reduction of the λ-calculus, by converting them to big-step seman-
tics, adding environments to avoid substitution, and memoizing evaluations. So-called
transfer lemmas enable the sharing of computations that are not obviously identical. We
then show how we can improve upon this by considering the convertibility problem in
its entirety, viewing it as proof search. To this end, we study what can be considered
a (non-)convertibility proof, drawing upon existing work. This gives rise to a new par-
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allel, heuristic-less algorithm for this test, which does not duplicate computations, and
comes with worst-case complexity guarantees. We derived a virtual machine from this
algorithm, and made it more efficient by following Grégoire and Leroy, showing that our
algorithm is suited to compilation of the input λ-terms for additional efficiency. Both this
semantics and this efficient parallel convertibility test have been implemented in OCaml
and experimentally validated, significantly outperforming Coq in some cases. They are
also both formalised and verified using Coq, building confidence in our work.
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Présentation

Introduction

Lorsqu’on s’intéresse à la notion de preuve mathématique, il est important de souligner
la nécessité de faire confiance à des propositions de base, les axiomes. Une preuve, pour
peu qu’elle soit suffisamment détaillée – quitte à en devenir difficilement compréhensible
intuitivement – peut alors être vérifiée pas à pas, de manière algorithmique : c’est là
le fondement du concept d’assistant de preuve. Dans cette thèse, nous nous intéressons
plus particulièrement à l’un d’entre eux : Coq, né d’un effort de recherche français à la
fin des années 1980. Celui-ci a depuis été largement utilisé, que ce soit dans le milieu
académique ou industriel, à la fois dans un but de formalisation mathématique ou de
correction logicielle. Cependant, lors de l’utilisation un outil de vérification logicielle tel
que Coq, il est important de rester vigilant quant à la correction de l’outil lui-même, et
de ne pas se fier aveuglément à un outil faillible. Une partie centrale de cet outil consiste
en ce que l’on appelle un test de convertibilité, notion que nous détaillons plus loin.

Les travaux présentés ici s’inscrivent alors dans une démarche d’optimisation de ce test
de convertibilité et de vérification de cette partie de Coq. Nous proposons pour cela di-
vers algorithmes pour la convertibilité, conçus pour être efficaces, et eux-mêmes vérifiés
en Coq. En effet, après avoir précisé quelques notions indispensables à la compréhension
des résultats obtenus, nous introduirons deux grandes méthodes. La première est une
approche incrémentale par rapport à l’état de l’art, dont l’apport consiste majoritaire-
ment en la vérification formelle de celle-ci ; la seconde est entièrement nouvelle et est
accompagnée, outre sa vérification formelle, de solides garanties d’efficacité.

Commençons par introduire quelques notions de λ-calcul, qui seront cruciales non seule-
ment pour définir le test de convertibilité, mais aussi pour comprendre les contributions
apportées dans cette thèse.

Le λ-calcul est un modèle de calcul très simple mais extrêmement puissant, capable
d’exprimer toute fonction calculable. Il est bâti à partir de seulement trois constructions :
les variables x ; les fonctions λx.t, qui abstraient une variable x et renvoient un résultat
t dépendant de celle-ci ; et l’application t u d’une fonction t à un argument u. Ensemble,
ces trois constructions donnent naissance à des objets nommés λ-termes, et fournissent
une base solide à la théorie des langages de programmation. Le λ-calcul est équipé d’une
opération dite de β-réduction, qui permet de transformer une fonction appliquée à un
argument (λx.t) u en le corps de cette même fonction où le paramètre a été substitué
par l’argument t[x := u].
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Dans ce contexte, le test de convertibilité consiste à identifier si deux λ-termes sont égaux
à β-réduction près. Il s’agit là d’un problème indécidable, mais si l’on impose aux termes
en entrée d’être fortement normalisants – c’est-à-dire qu’on ne peut pas écrire de suite
infinie de β-réductions à partir de ce terme –, alors le problème devient décidable, par
un algorithme qui consiste simplement à réduire les termes jusqu’à obtenir une forme
normale, qui ne peut plus se réduire ; puis à directement comparer les formes normales
pour l’égalité, à renommage des variables près. Cette procédure donne naturellement
naissance à l’organisation de ce manuscrit : la première partie est dédiée au calcul effi-
cace d’une forme normale ; tandis que la seconde considère le test de convertibilité dans
son ensemble et permet d’obtenir des optimisations significatives, qui ne seraient pas
possibles en décomposant celui-ci en normalisation puis comparaison. Dans ces travaux,
nous avons par ailleurs considéré un λ-calcul étendu, plus proche de celui sur lequel Coq
est fondé et sur lequel il effectue des tests de convertibilité. Nos travaux s’étendraient
ainsi naturellement à Coq.

Réduction forte paresseuse

Dans le chapitre 4, nous proposons une sémantique paresseuse pour la réduction forte,
c’est-à-dire une sémantique permettant le calcul de formes normales de λ-termes, incluant
la réduction sous les abstractions (i.e. à l’intérieur des fonctions), et n’effectuant aucun
calcul inutile. Pour cela, on effectue des transformations successives de sémantiques à
partir d’une sémantique d’appel par nom, à laquelle on ajoute tout d’abord des environ-
nements pour éviter les opérations de substitution, avant d’effectuer une mémoïsation
pour éviter de calculer plusieurs fois des réductions identiques. Dans ce contexte, la mé-
moïsation est plus complexe qu’habituellement car on peut s’intéresser à deux résultats
possibles d’une réduction – un dit profond, correspondant à la forme normale du terme,
l’autre dit superficiel, correspondant à sa forme normale de tête faible –, et des lemmes
dits de transfert nous permettent de passer d’un résultat à l’autre sans dupliquer les
calculs. Nous donnons ensuite une autre présentation équivalente des mêmes règles, qui
s’avère plus adaptée à l’implantation, où l’on calcule systématiquement le résultat su-
perficiel de la réduction, avant d’en calculer le résultat profond si c’était celui qui était
demandé. Nous étendons ensuite mécaniquement la sémantique obtenue aux extensions
du λ-calcul : les constructeurs, le filtrage par motifs et les points fixes.

Dans le chapitre 5, nous détaillons l’implantation en OCaml de cette sémantique. On
constate que l’implantation se fait assez naturellement en suivant la sémantique elle-
même, et qu’il est possible d’utiliser les constructions de paresse d’OCaml pour simplifier
l’implantation. Ceci résulte en un interpréteur concis, écrit en seulement quelques dizaines
de lignes de code.

Dans le chapitre 6, nous présentons la preuve en Coq de la correction de cette sémantique.
Pour cela, nous avons écrit cette sémantique dans un style dit pretty-big-step, qui permet
de partager certaines parties des preuves, ainsi que de raisonner sur la non-terminaison.
Pour cela, nous implantons successivement toutes les sémantiques présentées dans le cha-
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pitre 4, et nous prouvons que chaque sémantique est bien compatible avec la précédente.
Nous avons également créé une petite bibliothèque Coq pour permettre de raisonner sur
les types inductifs en créant des principes d’induction plus puissants, qui nous ont per-
mis de significativement simplifier les preuves. Ainsi, l’implantation présentée dans ce
chapitre représente environ dix mille lignes de preuve Coq.

Dans le chapitre 7, nous présentons une évaluation expérimentale succincte de cette ap-
proche, où l’on constate que notre implantation est du même ordre de grandeur d’effica-
cité que celle actuellement utilisée par Coq. Cela justifie la pertinence de notre approche,
puisqu’elle permet d’obtenir une efficacité similaire à Coq tout en étant formellement
vérifiée.

Nous passons brièvement sur le chapitre 8, qui détaille la littérature existante ainsi que
les extensions possibles des travaux que nous présentons, notamment la possibilité de
construire une machine virtuelle à partir de notre sémantique à grands pas, ou également
de faire une analyse de la complexité d’une implantation de notre sémantique.

Convertibilité

Dans la partie suivante, nous présentons donc – comme précisé dans l’introduction – une
approche nouvelle, intégrant du parallélisme afin d’obtenir un procédé plus efficace pour
le test de convertibilité.

Nous effectuons tout d’abord le constat suivant : lorsque, au cours d’un test de conver-
tibilité, nous obtenons deux variables libres différentes en tête comme dans x t1

?≡ y t2,
les deux termes ne peuvent pas être convertibles, et nous pouvons conclure immédiate-
ment sans avoir besoin de réduire en forme normale les arguments t1 et t2 passés à ces
variables. Par ailleurs, si nous avons un test de la forme f t1

?≡ f t2, et que nous sommes
capables de prouver que t1 et t2 sont convertibles, nous pouvons également conclure im-
médiatement que f t1 et f t2 le sont, sans avoir besoin de déplier le corps de f pour
calculer ces valeurs. Cependant, un problème dans ces situations est qu’il y a un choix à
faire, et qu’il est difficile voire impossible d’anticiper quelle option permettra de conclure
le plus rapidement. Par exemple, dans le cas du test de convertibilité x t1 t2

?≡ x t3 t4,
l’algorithme utilisé dans Coq effectue la comparaison de droite à gauche ; et dans le cas de
f t1

?≡ f t2, il tente toujours de prouver la convertibilité de t1 et de t2, même s’il aurait
été plus efficace de déplier f . Notre stratégie consiste alors à explorer les deux pistes
simultanément plutôt qu’essayer de proposer une heuristique qui serait nécessairement
incomplète.

Pour cela, dans le chapitre 9, on commence par présenter une machine abstraite pour
la réduction en forme normale de tête faible, proche de la machine utilisée par Coq, et
qui peut être redémarrée en préservant les calculs déjà effectués pour la suite du test
de convertibilité en cours. Nous la modifions ensuite pour obtenir une machine capable
de réduire plusieurs termes en parallèle, ce qui nous permet d’implanter l’optimisation
mentionnée plus haut. Cette machine est ainsi constituée d’un certain nombre de threads
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ou fils d’exécution qui effectuent des réductions, certains pouvant attendre d’obtenir le
résultat d’autres threads avant de continuer leurs calculs. Le test de convertibilité lui-
même requiert l’ajout d’un nouveau type de thread, dit de convertibilité, qui va attendre
d’avoir à sa disposition le résultat de deux threads de réduction pour tester la convertibi-
lité des valeurs associées. Certains threads de convertibilité correspondent également au
et ou au ou logique de deux autres threads de convertibilité, et sont créés lorsqu’on doit
faire un choix entre deux pistes à explorer. Ces pistes s’exécutent alors en parallèle, et
l’on dispose d’une sémantique de court-circuit permettant de mettre fin précocement au
calcul si on peut déterminer son résultat à partir d’un seul de ces threads. Cela nécessite
de pouvoir interrompre certains threads, tout en leur permettant de s’exécuter à nouveau
dans le futur s’ils redeviennent nécessaires, ce que nous implantons en maintenant une
liste de dépendances entre threads dans la machine. La machine ainsi obtenue constitue
une contribution majeure de cette thèse.

Dans le chapitre 10, nous transformons la machine abstraite obtenue en une machine
virtuelle, afin de permettre la compilation des termes initiaux pour une performance
supérieure. Nous nous inspirons ensuite de la littérature existante, et plus précisément
des travaux de Grégoire et Leroy, pour améliorer encore cette machine virtuelle.

Ensuite, dans le chapitre 11, nous détaillons comment nous avons construit une preuve
Coq de la correction de cet algorithme. Dans la preuve Coq, nous avons formalisé la
machine de réduction et la stratégie de convertibilité, mais pas la gestion des threads
actifs, qui est laissée non-déterministe pour obtenir une sur-approximation de la séman-
tique effective. La preuve elle-même est seulement modérément complexe – environ dix
mille lignes de preuve Coq – mais l’enjeu majeur, qui a demandé des efforts significatifs,
a consisté en la détermination des invariants précis nécessaires à la preuve de correction.
Au total, ces invariants représentent plus d’une centaine de lignes en Coq, dont soixante
constituant la définition de trois prédicats mutuellement inductifs. Ceux-ci étant particu-
lièrement complexes à manier en Coq, l’itération nécessaire pour affiner les invariants n’a
été possible que grâce à l’écriture d’une bibliothèque permettant de générer les principes
d’induction associés automatiquement, que Coq n’était pas capable d’obtenir.

Dans le chapitre 12, nous présentons une borne de complexité de notre algorithme, par
rapport à la longueur d’une plus courte preuve raisonnable de convertibilité existante.
Pour cela, nous devons d’abord définir le concept de longueur d’une preuve raisonnable,
ce que nous détaillons à travers le concept de structure de réduction. Nous étendons
ensuite ce concept en celui de structure de réduction effective, qui correspond à notre
machine, et nous permet d’obtenir une borne de complexité exponentielle en la longueur
de la preuve la plus courte. Cette borne est significativement meilleure que ce dont Coq
est capable, puisque celui-ci a un temps de calcul qui ne peut être borné par aucune
fonction calculable.

Le chapitre 13 consiste en une évaluation expérimentale détaillée de cette deuxième mé-
thode, où nous considérons un certain nombre de tests différents. Nous analysons la durée
du test de convertibilité lorsqu’effectué par Coq ou par notre algorithme, implémenté en
OCaml, ce qui nous permet de constater notamment que notre algorithme est exponen-
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tiellement plus rapide que Coq dans un certain nombre de cas. Nous présentons également
un cas pathologique où notre algorithme est tout de même exponentiellement plus lent
que Coq.

Le chapitre 14 est quant à lui consacré à la littérature liée à nos travaux, ainsi qu’aux
travaux futurs pouvant être envisagés. Dans les pistes de travaux futurs particulièrement
notables, on peut mentionner un ordonnanceur plus sophistiqué pour l’exécution qui nous
permettrait d’améliorer la borne de complexité afin qu’elle soit linéaire en le nombre
d’étapes de réduction, ou encore une capacité à produire et rejouer des traces de preuves
permettant une vérification substantiellement plus rapide que le test initial.

En conclusion, cette thèse présente des travaux améliorant significativement l’état de l’art
concernant les tests de convertibilité efficaces et vérifiés. Deux approches indépendantes
y sont détaillées, accompagnées de leurs implantations et d’une discussion incluant une
évaluation expérimentale.
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1. Introduction

How can we ever be sure of something? What does it mean to prove an assertion? More
succinctly and more deeply at the same time, what is a proof?

If we look at the most likely meaning of the word in daily life,1 to prove something means
to convince someone, be it one’s interlocutor or a court of law, that what one is saying
it true. In scientific fields such as physics or biology, proving something will mean being
able to convince the majority of scientists working in this field of the validity of one’s
claim. Even in mathematics or computer science, where the rules for what is considered
a proof are formal, such kinds of proofs are only rarely written, and proving a theorem
means convincing the rest of the community that there exists such a formal proof – not
writing one explicitly.

What this means is that there is a deep connection between the concept of proof and the
need to communicate. A proof, then, will rely on a set of rules for this communication:
both axioms, which are assumptions that both parties will agree to – for instance the
facts in a court, that two sets are equal if they have the same elements for a set theorist
–, and rules to reason about those, the most well-known being the modus ponens: if A is
true and A implies B, then B is true as well. With those rules, we can share our reasoning
with others, and others can verify that our proof does respect those rules. Those rules
will of course depend on the context as well: if an experiment gives the same result each
time it is performed, this will be a proof that it will always give the same result for a
physicist, while a mathematician will not call it a proof.

The axioms and rules used by mathematicians since the foundational crisis of mathemat-
ics in the 19th century are both purely abstract, in the sense that no access to our world
is needed to find or check them like a biologist or physicist would need, and well-defined,
meaning that one can precisely write them. These two facts together make it possible to
write a computer program, often called a theorem checker or proof assistant, that will
check if a given proof is correct by those rules.

In order to manipulate such proofs to check they are correct, and more generally to
reason about then, we need to see them as mathematical objects – and this is exactly
what logicians do, both facts mentioned above ensuring that we can indeed define what
they are precisely. But then, when we think again about the modus ponens rule for these
objects, we have a proof of A and a proof of A implies B, and we need to produce a proof
of B: a natural way to obtain this was if the proof of A implies B was a function that

1Although it is probably not the most likely meaning for the readers of this manuscript!
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1. Introduction

took proofs of A and produced proofs of B from them! In this setting, a proof becomes
the same thing as a program, and this correspondence has been further developed and
enriched, becoming known as the Curry-Howard isomorphism[How80].

This equivalence is the foundation of using type theory as one of the many possible
axiomatisations of mathematics. Type theory is based on the idea of giving types to
objects: it is not possible to add a number and a function, for instance. Using the Curry-
Howard isomorphism, we can then use those same types as statements of theorems, and
the functions and other objects we can build as proofs for such theorems, thereby giving
a unified framework for both definitions (and programs), and proofs.

An extension of type theory, called the calculus of constructions[CH88], is the theory on
which the Coq proof assistant[The24] is based. It is a software, first released in 1989, that
allows the user to write and check proofs written in the calculus of constructions. Since
then, it has been used for numerous applications, the most famous of them being the
verification of the four colour theorem[Gon08], the Feit-Thompson theorem concerning
the order of finite simple groups[Gon+13], and in another domain, the CompCert C
compiler, the first verified optimising compiler[Ler09].

At the heart of Coq, and in general, type theory, is the need of computation of programs;
more specifically λ-terms. The λ-calculus is a way to write such programs and functions,
together with rules for computation on them: a function that simply returns its argument,
then applied to x, should morally speaking be considered the same as x. This is a core
rule of type theory: if two objects are the same up to some computation, then they
should be considered the same. Testing whether this is true is called the convertibility
test , and will be the focus of this thesis.

There has of course been considerable prior work concerning the convertibility test of
Coq, both to make an efficient version of it, illustrated by the vm_compute[GL02] and
native_compute tactics[BDG11]; and to make versions that are formally verified in Coq,
as in the MetaCoq project[Soz+20]. However, our work is, to our knowledge, the first
effort on doing both at the same time.

Even if efficiency is almost always a desirable property, let us explain why it matters
here. Coq proof are written by a human, interactively. It is a folklore in interface design
that response times are primordial: a response time less than 0.1s feels instantaneous to
the user, a response time more than 1s is enough to break the flow of thought of the user,
while a response time above 10s will even lose the user’s attention.

Verification is a key concern as well. Indeed, a proof assistant is not magically protected
from bugs in its implementation, and such bugs can make the proof assistant be able
to prove false theorems. The code that is necessary to trust to ensure we can trust the
proofs verified by the proof assistant is called the trusted code base; we want this code
to be as simple as possible, to minimise the risk of bugs there. However, this directly
conflicts with our efficiency goal: more efficient programs tend to be more complex, and
therefore, more likely to be subject to bugs. Thus, verification gives us the best of both
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worlds: efficient code, but which has been proved correct, and therefore not part of the
trusted code base.2

Thus, our objective is to obtain an efficient and formally verified convertibility checker
for Coq. Before we dive into the details of our work, let us stop and consider what we
mean and what we are looking for by that. First, let us ponder over the meanings of the
word efficient.

One possible meaning of efficient would be to consider pure speed or memory use. If
that was the choice we were interested in, we would have compiled the λ-terms to low-
level C code, used CompCert to compile said code, and run the resulting program at full
speed. Although of definite practical interest, and although there may be a few points
of theoretical interest, this would probably not have brought new insights: an unverified
convertibility test for Coq terms that compiles the term to machine code (using the
OCaml compiler) already exists.

Another possible meaning would try to minimise the number of simulated β-reduction
steps. However enticing, this approach suffers from a serious drawback. Indeed, optimal
strategies are known for β-reduction, but they may perform a non-elementary3 number of
administrative reductions[GS17]. Thus, the cost of β-reductions is completely dominated
by administrative steps, and the number of β-reductions is no longer a good proxy for
the time complexity of the resulting program. Since no better strategy is known despite
optimal reduction being studied for almost half a century, it seemed unlikely for us to
both find and formally prove a better strategy for optimal reduction.

Instead, we chose to try to optimise for worst-case complexity. By this, we mean that
if there is a way to prove or disprove convertibility in a certain amount of time, for a
measure that is to be defined, we want the time taken not to be too large compared to
this minimum amount of time.

The other objective of this work is for our convertibility checker to be formally verified.
However, formal verification always has its limits, and these need to be defined to know
what is really verified and what is trusted.

A first question is to know what kind of verification effort we are doing. One possibility is
a posteriori validation: we have an unverified program for checking convertibility which
outputs a proof (in a format that is either generic for proofs, or specific for this problem),
and then a verified checker reads that proof and verifies it is correct. With this method,
some amount of proof work has to be done for every input, either by a generic proof
system (such as Coq) if the proof is in a generic format, or by a specific checker that is
formally verified. In both cases, we have a serious drawback concerning efficiency: the
cost of verification is often high, and this will be no exception. Indeed, verifying a proof

2Note that, due to Gödel’s incompleteness theorem, we can never hope to prove that a proof assistant is
fully correct inside itself; however, we can prove that its implementation corresponds to the underlying
theory, a task that is still formidable, but at least possible.

3In this context, elementary means smaller than a tower of exponentials of fixed height.
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1. Introduction

of convertibility or non-convertibility often is almost as long as finding the proof itself,4

at least concerning the costs of reduction. Thus, it will be almost as easy to prove the
proof-generating program as to write a checker for its proofs. Besides, if the proof format
was a generic one such as Coq, then Coq would need to be run to check every invocation
of the convertibility test, defeating the objective of having a convertibility checker that
could be used to verify parts of Coq!

Another possibility, slightly related, is generating a program that will output whether
the two terms are convertible or not, and then use translation validation to check the
resulting program will indeed output the correct result. With translation validation, the
program transformation is again unverified, and can optionally output a proof that its
inputs and the generated program behave in the same way. Then, a verified checker takes
the inputs, the generated program and optionally the generated proof, and checks that the
generated program will output the correct result.5 Again, there is verification work that
needs to be done for each convertibility test. However, depending on how the program
is generated, the verification effort can be proportional to the size of the terms instead
of proportional to the amount of work that has to be done to prove (non-)convertibility,
so this is already a lot better! In our case however, convertibility and strong reduction
need quite complex runtime mechanisms, which will have to be proved correct to ensure
the generated program runs correctly. The verification effort is therefore not much more
important if we want to prove correctness of the compilation part as well.

The possibility we implemented is to convert our terms to a program that will output the
correct result, in a manner that is completely verified. With this solution, all verification
is done only once: the program generator is proved correct according to the semantics
of the output machine, and a convertibility test is then simply generating the program
and running it. In our case, the machine is an abstract machine specifically designed for
convertibility. It is implemented in OCaml, and we specify its semantics in Coq, so the
implementation in OCaml has to be trusted. However, it follows quite faithfully the Coq
semantics, so the trust in it can be relatively high. The reason why we implement it in
OCaml instead of Coq is that the implementation maintains additional information to
be able to perform scheduling, which is non-deterministic in the Coq semantics, where
we prove that all executions return the correct answer.

Another question is about termination. Although proving termination properties of pro-
grams can be necessary for verification (the existence of a terminating program producing
a result satisfying a given property means there exists such a result), in our goal of only
producing correct answers, termination is not a very important property. Our convertibil-
ity checker always terminates when fed strongly-normalising terms, but we did not prove

4Although we will see that this is not completely the case with our efficient convertibility checker later,
as it has a form of choice points! However, this is only for part of the proof search; the reduction
steps themselves are a large part of the computation, and a checker will have to do the same amount
of work than a prover here.

5As always in translation validation, the checker will use the fact that the generated program is not
any program but a program generated from the input program, thus having the same shape, to avoid
stepping into uncomputable territory.
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this property, as it would require a lot of additional proof effort. Thus, what we proved
about it is that if it terminates with a given result, then that result is correct. Like-
wise, we do not prove any theorem about complexity, since proving a complexity bound
of a program implies proving its termination. However, we performed a pen-and-paper
complexity analysis of our checker.
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2. The λ-calculus

2.1. λ-terms and variables

The λ-calculus is one of the oldest models of computation, being first introduced by
Church in the 1930s [Chu32; Chu33]. Unlike the Turing machine, which is only mostly
useful for the theory of computation, the use of the λ-calculus is widespread in program-
ming language theory. It forms the basis of most functional programming languages, and
while bare, contains insights about the use and power of functions.

At the heart of the λ-calculus is the definition of λ-terms, which are defined by the
following grammar:

t ::= x | λx.t | t t

Here, the x are variables, which are names drawn from a (countably) infinite set. The
term λx.t is called a λ-abstraction, or more simply an abstraction, and intuitively repre-
sents the function that associates t to x, written x 7→ t in mathematics. The term t1 t2
is an application and represents the application of the function t1 to the argument t2.
When writing terms, application associates to the left, so that t1 t2 t3 is (t1 t2) t3 and
not t1 (t2 t3). Another source of ambiguity are λ-abstractions, which extend as far to
the right as possible, so that λx.t1 t2 is λx.(t1 t2) and not (λx.t1) t2.

For a given λ-term t, we can define its free variables, written fv(t), which are the variables
in t which have at least one occurrence that is not under a λ-abstraction binding them.
We will also call a binder any construction that creates bound variables, for now only
λ-abstractions. Free variables are defined inductively by:

fv(x) = {x}
fv(λx.t) = fv(t) \ {x}
fv(t1 t2) = fv(t1) ∪ fv(t2)

In the following, we will say that λ-terms containing free variables are open, while λ-terms
without any free variable are closed .

For a given representation of a λ-term, we can speak about its bound variables, which
are those that are named by a λ-abstraction. Note that, unlike the terminology suggests,
a variable can be both bound and free at the same time, as in the given representation
of the λ-term x (λx.x). Equality between λ-terms is slightly tricky to define, as it is
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2. The λ-calculus

equality up to renaming of bound variables, also called α-equivalence: for instance, λx.x
and λy.y denote the same λ-term. The idea behind α-equivalence is that the semantics
of a λ-term, or of a program, should not depend on the programmer-provided names of
the bound variables. Thus, we want to be able to (carefully) rename bound variables,
and we want α-equivalence to express the conservation of the underlying structure when
renaming variables in this way. An informal method to define α-equivalence is to draw
a line from each variable to the nearest enclosing λ-abstraction with the same name,
then remove all variable names: two λ-terms are α-equivalent if the result is the same
for both. More formally, we use an alternate representation of variables called de Bruijn
indices: instead of variable names, we only remember how many abstractions need to be
traversed to find the abstraction corresponding to each variable. The grammar of terms
using de Bruijn indices is shown below:

t ::= n | λ.t | t t

In this form, all variable names become unnecessary, and two λ-terms are α-equivalent if
and only if their representations using de Bruijn indices are identical. For instance, the
λ-term λx.λy.x y would be represented as λ.λ.1 0, while λx.λy.y x would be represented
as λ.λ.0 1, and λy.λx.y x, which is α-equivalent to the first term shown, would be
represented as λ.λ.1 0, identical to the de Bruijn representation of that term.

When converting an open λ-term to de Bruijn indices, we need a way to associate numbers
to such free variables, which do not have a corresponding binder. A simple way is to give
them numbers greater than the number of enclosing binders, saying that such variables
do not refer to a binder defined in the term, and we extend the definitions of open and
closed terms accordingly. We show below a variant of de Bruijn indices called the locally
nameless representation [Cha12], which avoids the problem of associating a number to
free variables. In this representation, we have both named variables and de Bruijn indices,
but the binders only apply to the variables with de Bruijn indices: named variables are
automatically free. On the other hand, we constrain the indices to be smaller than the
number of enclosing binders, so that a de Bruijn variable always refers to a binder in the
term. We give a grammar of λ-terms in locally nameless representation below, followed
by conversion functions from a λ-term with named variables to one in locally nameless
representation.

t ::= n | x | λ.t | t t

In this definition, n is a nonnegative integer for bound variables, while x is for free
variables. The λ-abstractions no longer carry a variable, since they are directly referred
to by bound variables, using their position in the list of enclosing binders.

The conversion of λ-terms to the locally nameless representation is given by the two
functions index and db below: indexρ(x) locates the position of x in the environment
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2.2. Substitution

ρ, a list of variables, while dbρ(t) converts t to the locally nameless representation using
ρ as the list of variable names bound by the enclosing binders. The full conversion from
a λ-term of its locally nameless representation is thus the function db[].

indexy::ρ(x) = 0 if x = y

indexy::ρ(x) = 1 + indexρ(x) otherwise

dbρ(x) = indexρ(x) if x ∈ ρ

dbρ(x) = x otherwise
dbρ(λx.t) = λ.dbx::ρ(t)

dbρ(t1 t2) = dbρ(t1) dbρ(t2)

Equality among λ-terms becomes easy to define: t1 is α-equivalent to t2, written t1 =α t2
or t1 = t2 in the following, if db[](t1) = db[](t2).

The main advantage of de Bruijn indices, or the locally nameless representation, is that
α-equivalence becomes trivial: using de Bruijn indices, two terms are α-equivalent if and
only if they are identical. When working with a proof assistant, this greatly simplifies
the proofs.

However, de Bruijn indices have a major drawback when we consider terms no longer as
trees – their natural representation, since they are inductively defined –, but as directed
acyclic graphs – i.e. trees where we identify some subtrees together – to express sharing
of subterms. For instance, consider the term λx.x (λy.x). This term can be represented
as a graph by sharing both instances of x, like in Figure 2.1. However, in the de Bruijn
representation, the variable nodes have difference indices and thus cannot be shared!1

In this thesis, we will sometimes work with de Bruijn indices and sometimes with named
variables, depending on whichever is most adapted for the task at hand. For instance,
our Coq formalisation in chapter 6 takes terms with de Bruijn indices as inputs, but
produces results with named variables in order to preserve sharing.

2.2. Substitution

A fundamental operation to define the semantics of the λ-calculus is substitution. The
basic idea behind substitution is to replace all occurrences of a given variable in a term
by another λ-term. However, variables must be handled with care, to avoid capture, that
is, changing the binding site of a variable by accident. For example, (λx.x y)[y := x]

1An alternate representation of variables is de Bruijn levels, where binders are enumerated from top to
bottom instead of from bottom to top. However, while it allows sharing in this case, it prevents the
sharing of λx.x in the case of (λx.x) (λy.λx.x). It is also possible to preserve sharing by inserting
explicit renamings in the term, but this loses the unique representation property.
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λx

@

x λy

x

(a) Named representation,
without sharing

λx

@

λy

x

(b) Named representation,
with sharing

λ

@

0 λ

1

(c) De Bruijn representation,
not shareable

Figure 2.1.: Different ways to represent the term λx.x (λy.x). The term is read from top
to bottom, where a λ node denotes an abstraction of the term represented by the child,
a @ node denotes the application of the left subtree to the right subtree, and variable
nodes denote the variables they contain. The backward edges from variables to λ nodes
show which binder the variables refer to.

should not be equal to λx.x x. Instead, we need to rename the bound variable x first to
z, giving a result equal to λz.z x.

The substitution of x by u in t, which we will write t[x := u], is defined recursively as
follows:

x[x := u] = u

y[x := u] = y if y ̸= x

(t1 t2)[x := u] = (t1[x := u]) (t2[x := u])

(λy.t)[x := u] = λy.(t[x := u]) if y ̸= x ∧ y /∈ fv(u)

Note that this definition is not total, as we require that y is neither x nor in fv(u) in the
λy.t case. In the case where the result is not defined by the equations above, we perform
an α-renaming on t, that is, we give the bound variables of t fresh names, different from
x and not in fv(u), so that the result is well defined.

We can also perform parallel substitution, that is, substitution of multiple variables at
once, without substituting under the values u being substituted. Here, x means any
sequence of variables, and u is a sequence of λ-terms, with the same length as x. The
very similar definition is given below:
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xi[x := u] = ui

y[x := u] = y if y /∈ x

(t1 t2)[x := u] = (t1[x := u]) (t2[x := u])

(λy.t)[x := u] = λy.(t[x := u]) if y /∈ x ∧ y /∈ fv(u)

To give a definition of substitution that is total, and thus, more easily used in formal
proofs, we turn to de Bruijn indices again. However, the definition is trickier in this case,
as the term u that is being substituted for is not necessarily closed.

Moreover, substitution needs to operate on open terms: for instance, we could need to
replace all occurrences of the first unbound variable. Thus, the easiest way to define
substitution on locally nameless or de Bruijn terms is to define parallel substitution first,
and to deduce simple substitution from it.

A parallel substitution over de Bruijn terms is defined by a function σ from nonnegative
integers to terms, meaning that the free variable at level i should be replaced by σ(i).
We also write tσ for the parallel substitution of σ in t, which we define below:

nσ = σ(n)

xσ = x

(t1 t2)σ = (t1σ) (t2σ)

(λ.t)σ = λ.t(⇑ σ)

Here, ⇑ σ is the substitution mapping the variable 0 to 0, and the variable i+1 to ↑ (σi),
where ↑ t is t with all its free variables increased by 1. It is defined as ↑0 t, where ↑k t
increases all free variables at a level greater or equal than k by 1:

↑k n = n if n < k

↑k n = n+ 1 if k ≤ n

↑k x = x

↑k (t1 t2) = (↑k t1) (↑k t2)

↑k (λ.t) = λ.(↑k+1 t)

From this definition of parallel substitution, it is easy to define substitution of the first
n free variables by terms of u. To that end, we use the substitution σ(i) = ui for i < n
and σ(i) = i− n otherwise, which replaces the first n unbound variables by the terms of
u in that order, and considers the free variables starting from n to be the new unbound
variables, by reducing them by n. The simple substitution of a single value is then defined
by the above definition with u consisting in a single value.

13



2. The λ-calculus

2.3. β-reduction and convertibility

The fundamental operation in λ-calculus, which turns it into a computation model, is
called β-reduction.2 Intuitively, the application of a function λx.t to an argument u
behaves like t[x := u], namely, the body t of the function, where the formal parameter x
is replaced by the actual argument u. β-reduction is a binary reduction relation between
λ-terms, written →β . It is defined inductively by the following rules:

AppAbs

(λx.t) u →β t[x := u]

CtxApp1
t1 →β t2

t1 u →β t2 u

CtxApp2
t1 →β t2

u t1 →β u t2

CtxAbs
t1 →β t2

λx.t1 →β λx.t2

We will note →∗
β the reflexive transitive closure of →β , which expresses that a term t

reduces in zero or more steps to a term u. We say that a λ-term t is in normal form,
and note t ̸→β , if there is no λ-term u such that t →β u. We will also say that t is
strongly normalising if there is no infinite chain of reductions starting from t, and weakly
normalising if there exists a term in normal form u so that t →∗

β u.

While these rules seem very simple, they give rise to a rich model of computation. Most
notably, the λ-calculus is Turing-complete, meaning it can express all computable func-
tions. Consequently, deciding whether a λ-term is strongly or weakly normalising is
equivalent to solving the halting problem, and therefore undecidable [Tur37].

We will call β-equivalence, and write ≡β , the reflexive transitive symmetric closure of
→β . The convertibility problem is deciding whether two λ-terms are β-equivalent. Con-
vertibility is an undecidable problem as well [Chu36], thus we need to reduce the scope
of the problem if we want to have a decidable algorithm. Fortunately, the terms we are
interested in are all strongly normalising, which is more than enough to get decidability,
as we will see below.

The important property that allows us to get an algorithm is that →β is confluent . We
say that a reduction relation → is confluent if for all t, u, v, if t →∗ u and t →∗ v,
then there exists w such that u →∗ w and v →∗ w. A way to graphically represent this
definition is the diagram in Figure 2.2a, where the solid arrows indicate known reductions,
and the dashed arrows express the existence of a value that satisfies them.

The confluence of the λ-calculus has several important consequences, the first being the
uniqueness of normal forms. Indeed, if a term t has two normal forms u and v, then
there exists w such that u →∗

β w and v →∗
β w. However, u and v being normal forms,

this implies u = w = v, so normal forms are indeed unique. Moreover, the question of
convertibility can be significantly simplified: two terms u and v are β-equivalent if and
only if there exists w such that u →∗

β w and v →∗
β w. Indeed, the relation u ≡ v defined

2There seems to be a tendency to name everything with Greek letters in λ-calculus: we have already
seen λ-terms, α-equivalence, and β-reduction, and we will later see δ-reduction and η-expansion.
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2.4. Contexts

t u

v w

∗

∗

∗

∗

(a) Confluence

t u

v w∗

∗

(b) Local confluence

t u

v w
≤1

≤1

(c) Strong confluence

Figure 2.2.: Diagram for different notions of confluence

x y z

u v

w

∗ ∗ ∗ ∗

∗ ∗

Figure 2.3.: Visual proof of the transitivity of ≡

as ∃w, u →∗
β w ∧ v →∗

β w is trivially included in ≡β , but it is also reflexive, symmetric,
containing →β and proved transitive by Figure 2.3, so it is the same as ≡β .

From there, we can easily deduce an algorithm to check the convertibility of two strongly-
normalising λ-terms: first, reduce the terms to a normal form, and then check whether
the normal forms are equal. This algorithm terminates since the inputs are strongly
normalising, and always returns the correct answer since normal forms are unique.

Computing a normal form by naïvely applying the rules of β-reduction is very inefficient;
moreover, it is also possible to check convertibility without going all the way to normal
forms. In this thesis, we will try to find better algorithms for those two questions. In the
first part of this thesis, we will see how to compute the normal form of a λ-term more
efficiently, while in the second part, we will look at a way to test convertibility of two
terms without going all the way down to normal forms.

2.4. Contexts

Another way to specify β-reduction is to use contexts, which are terms with a hole,
written □. They are defined by the following grammar:

C ::= □ | λx.C | C t | t C

15



2. The λ-calculus

Then, we define a filling operation C[t], which takes a context and a term, and returns
a term, which corresponds to C where the hole has been replaced by t:

□[t] = t (C t2)[t1] = C[t1] t2

(λx.C)[t] = λx.C[t] (t1 C)[t2] = t1 C[t2]

Once we have contexts, the definition of β-reduction becomes a lot simpler. We first
define a rule for the reduction of a redex at the top of the term by:

(λx.t1) t2 7→β t1[x := t2]

Then, we define →β to be the context closure of 7→β , that is:

C[t1] →β C[t2] if t1 7→β t2

The main advantage of contexts is that while the 7→β definition will always remain
the same, we will see several variants of β-reduction where the definition of contexts is
different. In these cases, we only have to specify the new contexts instead of all the rules
for →β given above, which simplifies a lot the definition of other variants.

2.5. Weak, open and strong β-reduction

In the rules given above for β-reduction, contexts allow reduction to happen anywhere
inside a term. We call this version of →β strong β-reduction. However, most functional
programming languages do not reduce under λ-abstractions. One of the reasons is that
this simplifies implementations, as if we see λ-abstractions as functions, compiling a
term requires its code to stay the same throughout execution. If we remove the case of
λ-abstractions from the definition of contexts as given below, we get another flavour of
β-reduction called open β-reduction.

C ::= □ | C t | t C

The most well-known version of β-reduction, which is actually the one used by most
programming languages, is weak reduction. In this version, λ-abstractions do not appear
in contexts like in open reduction, but we also require the term we reduce to be closed.3

This way, when we perform a step of β-reduction (λx.t1) t2 →β t1[x := t2], t2 is closed and
thus we do not have to worry about its free variables when performing the substitution.

3It is easy to see that the property of being a closed term is preserved by β-reduction.
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2.6. Reduction strategies

2.6. Reduction strategies

In the remainder of part I, we will consider weak reduction only, as strong reduction is
a more complicated problem which will be studied in Parts II and III. The →β relation
we gave is non-deterministic, and there are several strategies to determine in what order
the reductions are to be performed.

The simplest of those strategies is call-by-name. In call-by-name, we disallow reducing
the argument of a function, that is, we further restrict the evaluation contexts to the
following:

C ::= □ | C t

In an application (λx.t) u, each copy of the argument u will then be further reduced after
the β-reduction has been performed.

Another strategy is call-by-value. In call-by-value, we first define a subset of irreducible
terms called values, here defined by v ::= λx.t. Then, we perform reduction by restricting
7→β to a function applied to a value, that is: (λx.t) v 7→β t[x := v]. Furthermore, we
may restrict the contexts to force (for instance) a function to be fully evaluated before
reducing its argument:

C ::= □ | C t | v C

This choice of contexts ensure that call-by-value reduces the argument before substituting
it in the function body. In contrast, call-by-name substitutes it first, which can cause
repeated evaluation of the argument if the parameter occurs several times in the function
body. For instance, writing I ′ = I = λx.x, consider the term t = (λy.y y) (I ′ I). With
call-by-value, the successive reduction steps will be t → (λy.y y) I → I I → I, while
with call-by-name, they will be t → (I ′ I) (I ′ I) → I (I ′ I) → I ′ I → I, where we can
see that the reduction of the argument I ′ I → I has been done twice.

On the other hand, call-by-value will sometimes do a lot of useless work if that argument
is never used, while call-by-name will not do anything in that case. An extreme example
is (λx.I) Ω, where Ω does not terminate: this term terminates in call-by-name with
result I after a single reduction step, but does not terminate in call-by-value. More
generally, call-by-name has a very strong property: if a λ-term is weakly normalising,
then call-by-name will terminate on this term.

Finally, call-by-need is a hybrid approach that evaluates function arguments at most once,
but only when they are needed. However, it is complicated to define in terms of pure
λ-calculus, although it has been done by Ariola et al. [Ari+95] with big-step semantics,
and Launchbury [Lau93] with operational semantics. A relatively simple way to define
call-by-need is with an abstract machine, so we delay its definition to section 2.8.
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2. The λ-calculus

2.7. Abstract and virtual machines

To give practical implementations of β-reduction or other computations while remaining
at a high level and avoiding trivial details, we will use abstract machines. Formally, an
abstract machine is simply a reduction relation ⇝ on a set of states. A state represents
a point in the computation in more details that can be expressed by a single term. We
say that ⇝ simulates a reduction relation → if we have:

• an initialisation function init, from terms to states,

• a readback function read, from states to terms, such that read(init(t)) = t for all
t,

• the simulation property , which states that if s1 ⇝ s2, then read(s1) →∗ read(s2).

When trying to compute the number of reductions done by the machine compared to
the number of reductions done in the original program, it is relevant to make the dif-
ference between so-called administrative reductions, which are reductions s1 ⇝ s2 for
which read(s1) = read(s2), and the other reductions, for which read(s1) →+ read(s2).
Indeed, there are at most as many non-administrative reductions as there are reductions
in the original program, therefore evaluating the number of administrative reductions is
necessary to get good complexity guarantees in the final program.

A well-known abstract machines is the Krivine abstract machine [Kri07] or KAM, which
implements the weak call-by-name λ-calculus. The states of the Krivine machine are
composed of three parts: the code which is a term; the environment , which is a map
from variables to closures; and the stack , which is a list of closures; where a closure is a
pair of a term and an environment.

The environment part of a closure is a delayed substitution, and we can read a closure
back to a term by the following function:

readclos(t, e) = t[x := u]

where:
x = dom(e)

∀i, ui = readclos(e(xi))

A state
(

Code Environment Stack
t e p

)
represents the application of the closure (t, e)

to the arguments p.
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2.7. Abstract and virtual machines

Code Environment Stack Code Environment Stack
t1 t2 e π ⇝a t1 e (t2, e) :: π
x e ⋆ (x 7→ (t, e′)) π ⇝s t e′ π

λx.t1 e p :: π ⇝β t1 e ⋆ (x 7→ p) π

Figure 2.4.: The Krivine abstract machine.

This leads to the following definitions of init and read:

init(t) =

(
Code Environment Stack
t ∅ []

)
read

(
Code Environment Stack
t e p

)
= readclos(t, e) readclos(p)

The Krivine abstract machine is then defined by the union of the three transition relations
in Figure 2.4, where each line represents a transition relation. For instance, the first line
corresponds to the following transition relation:(

Code Environment Stack
t1 t2 e π

)
⇝a

(
Code Environment Stack
t1 e (t2, e) :: π

)

It is easily seen that if s1 ⇝a s2 or s1 ⇝s s2, then read(s1) = read(s2), and if s1 ⇝β s2,
then read(s1) →β read(s2), thus ⇝ simulates →β indeed.

One important property, which we will call the subterm property , of the Krivine machine
is that, at each point, the code is a subterm of the initial term. There are thus only a finite
number of possible values for the code, and we could replace the code with a compiled
version. We first define a compiling function, from terms to machine instructions:

Jt1 t2Kρ = APP(Jt2Kρ); Jt1Kρ
Jλx.tKρ = ABS; JtKx::ρ

JxKρ = VAR(indexρ(x))

Once we have this compiling function, we can define a version of the Krivine abstract
machine that works with compiled code:

Code Environment Stack Code Environment Stack
APP(c2); c1 e π ⇝a c1 e (c2, e) :: π
VAR(n) pn :: (c′, e′) :: e π ⇝s c′ e′ π
ABS; c e p :: π ⇝β c p :: e π
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2. The λ-calculus

Code Environment Stack Dump Store
t1 t2 e π D H

⇝a t1 e a :: π D H ⋆ (a 7→ (t2, e))

x e ⋆ (x 7→ a) π D H ⋆ (a 7→ (t, e′))
⇝l t e′ [] (a, π) :: D H ⋆ (a 7→ □)

λx.t1 e a :: π D H
⇝β t1 e ⋆ (x 7→ a) π D H

λx.t1 e [] (a, π) :: D H ⋆ (a 7→ □)
⇝s λx.t1 e π D H ⋆ (a 7→ (λx.t1, e))

Figure 2.5.: The lazy Krivine abstract machine.

The definitions are very similar, but we can see here that the analysis of the term is done
by the compilation function, and that the compiled code never changes during execution,
so that in practice, it could be represented by a pointer inside an array of machine
instructions called opcodes. We will call such abstract machines virtual machines,4 to
show the importance of having static code.

2.8. Call-by-need reduction

As we said before, call-by-need is a reduction strategy that evaluates function arguments
at most once, only if they are needed. There are two main ways of thinking about call-
by-need: it can either be seen as a lazy version of call-by-value, or as a memoizing version
of call-by-name. When we see call-by-need as a lazy version of call-by-value, instead of
requiring the argument of a β-redex to be a value, we only promise we are going to reduce
it to a value when it will be needed. Once it it first needed and we have computed the
value, all places where the argument was used now have access to this value instead.
When we see it as a memoizing version of call-by-name, we remember that the argument
we substituted is shared at all the places where we substituted it. When we perform
reductions in this argument, the reductions happen in all the places it was substituted
at once.

Call-by-need combines the best of both worlds: it avoids computation as much as possible,
and only performs computations that are needed to get the result.

4The definition of a virtual machine is often given as an abstract machine for which an interpreter
exists. Besides being an inappropriate definition for theoretical purposes as it may change over time,
most such implementations modify the abstract machine to use compiled code whenever possible for
efficiency reasons. Thus, we choose this criterion as the definition of a virtual machine here, as it
expresses why we want it. Abstract machines which satisfy the subterm property are often easy to
convert into virtual machines, and we will sometimes call them such.
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readclos((t, e), H) = t[x := u]

where
x = dom(e)

∀i, ui = readclos(H(xi), H)

readstack(t, p,H) = t readclos(H(p), p)

readdump(t, π, [], H) = readstack(t, π,H)

readdump(t, π, (a, π′) :: D,H ⋆ (a 7→ □)) =
readdump(readstack(t, π,H ⋆ (a 7→ t)), π′, D,H ⋆ (a 7→ t))

read(t, e, π,D,H) = readdump(readclos((t, e), H), π,D,H)

Figure 2.6.: Readback function for the LazyKAM.

Code Stack Dump Store
(t1 t2, e)c π D H

⇝a (t1, e)c a :: π D H ⋆ (a 7→ L (t2, e))

(x, e)c π D H
⇝l e(x) π D H

(λx.t, e)c π D H
⇝λ (λx.t, e) π D H

a π D H ⋆ (a 7→ L (t, e))
⇝f1 (t, e)c [] (a, π) :: D H ⋆ (a 7→ □)

a π D H ⋆ (a 7→ D v)
⇝f2 v π D H ⋆ (a 7→ D v)

(λx.t1, e) a :: π D H
⇝β (t1, e ⋆ (x 7→ a))c π D H

v [] (a, π) :: D H ⋆ (a 7→ □)
⇝s v π D H ⋆ (a 7→ D v) v ̸= a′

Figure 2.7.: The lazy Krivine abstract machine, with lazy values.
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2. The λ-calculus

The easiest way to formally define it is to start with the KAM, the LazyKAM, which
shares the evaluation when the code and environment correspond to a given closure (t, e).
We then have to extend the definition of the machine to add two more parts: the store,
which holds bindings from memory locations to values, and the dump, which remembers
what is to be done once we finish computing the value corresponding to a given location.

The rules are shown in Figure 2.5, and are quite similar to those of the KAM: the rule⇝β

has not changed at all, affecting neither the dump nor the store, while the only change
to ⇝a is the extra indirection that is added through the store. The more important
change is the splitting of the rule ⇝s into two rules, ⇝l and ⇝s. Of these two rules, ⇝l

starts the evaluation of a closure stored on the store, but adds information to the dump
to remember to update the value in the store once the evaluation of this term finishes
on a value. On the other hand, the rule ⇝s saves the result of the evaluation back on
the store for when it is needed later, and restores the stack from before the evaluation of
this variable.

We could give a readback function from states to terms to establish that the LazyKAM
does simulate β-reduction, but it is actually easier to prove that it simulates the KAM
itself! To go from a state for the LazyKAM to a state for the KAM, we simply concate-
nate all the parts of the stack that are seen in the dump, and we replace each memory
location in the state of environment by the closure it held at the moment it was first cre-
ated. We also have the property that for each contents (t′, e′) of a memory location, if it
held (t, e) when it was created, then for all π, we have (t, e, π)⇝∗ (t′, e′, π) for the KAM,
meaning that we memoized the result of a computation. With this invariant in mind, we
can see that the LazyKAM simulates the KAM, and thus β-reduction. Besides, this
really makes explicit that this machine is indeed a memoized version of call-by-need.

For this machine, the initial state for a term t is t as code, and an empty environment,
stack, dump and store, while a final state is when the code is of the form λx.t, and both
the stack and the dump are empty. The readback function is a bit complex, and shown
in Figure 2.6.

Another slightly different way to present the LazyKAM is by separating lazy values from
already-evaluated values, in our case the λ-abstractions. This way is easier to extend, in
particular to support the constructors extension.

In that case, the store contains either lazy values L (t, e), or computed results D v, where a
value v is either a memory address a or a λ-abstraction (λx.t, e). We also merge the code
and environment together, with the code now being either a value v, or a pair between a
term and en environment (t, e)c.5 The resulting machine is presented in Figure 2.7. By
separating the lazy values from the others, we can clearly see how each lazy value is only
evaluated once.

5We use (t, e)c instead of (t, e) to be able to make the distinction when the value itself is a λ-abstraction
(λx.t, e).
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2.9. Weak head reduction

Weak head reduction is a subset of β-reduction, aimed at exposing the shape of the
normal form of a term. Weak head reduction is simply defined by the H-closure of 7→β ,
with the following definition for the weak head contexts H:

H ::= □ | H t

A term is said to be in weak head normal form if it is a normal form for weak head
reduction. Terms in weak head normal form are either abstractions λx.t, or a free variable
x applied to any number of arguments x t. Weak head reduction has contexts identical
to call-by-name reduction shown above, but it is treated differently because we want to
consider it as a separate kind of reduction, and not as simply an evaluation strategy, so
that we can combine it with other kinds of reductions on open terms. Moreover, weak
head reduction has a property concerning convertibility which will be crucial in part III.
Indeed, when two terms are in weak head normal form, they are convertible if and only
if one of the following is true:

• both terms are of the form λx.t and λx.u (up to α-conversion), and t and u are
convertible,

• both terms are of the form x t
n and x un, with the same variable x and the same

number of arguments n, and for all i, ti and ui are convertible.

Thus, we can see why we say that weak head reductions exposes the shape of the normal
form of a term: once a term is in weak head normal form, its global shape (either an
abstraction or a free variable applied to some number of arguments) can no longer change.

2.10. Extensions of the λ-calculus

2.10.1. Defined constants

The λ-calculus with defined constants is one which will be very important in this work.
Here, we extend the terms with constants:

t ::= · · · | c

We have a finite number of constants c, and a static definition dc for each constant.
Besides, defined constant must be closed, and they must form an acyclic graph (each
constant can only reference other constants defined before it).

We add a new reduction rule →δ, defined by the context-closure of 7→δ defined as c 7→δ dc
for each constant c, calling unfolding the constant c.

Thus, each constant can be unfolded to its definition whenever it appears, allowing to
modularise the code of a λ-calculus program.
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2. The λ-calculus

2.10.2. Constructors and pattern matching

We can also extend the λ-calculus with data constructors and pattern matching (more
precisely, shallow pattern matching). Here, the terms are extended as follows:

t ::= · · · | T t | match t with T x ⇒ t end

Constructors have a tag T and any number of subterms, while pattern matching matches
one term depending on its constructor. When a constructor has more than one subterm,
we usually group them inside parentheses, with commas separating them, while the
several cases in pattern matching are separated by |.

Contexts and head contexts are likewise extended:

C ::= · · · | T (t, C, t) | match C with T x ⇒ t end

| match t with T x ⇒ t | T x ⇒ C | T x ⇒ t end

H ::= · · · | match H with T x ⇒ t end

As usual, the reduction rule →ι is the context-closure of 7→ι defined below:

match S un with T x ⇒ t | S yn ⇒ v | T x ⇒ t end 7→ι v[y := u]

This reduction rule selects the case with the correct tag, and replaces the variables y by
the arguments of the constructor u. It also requires y and u to have the same length, for
the substitution to be defined.

With the introduction of these terms, stuck terms can also appear. These terms allow
no reduction to happen, but are not in the form we expect for values. To avoid them,
we will assume our terms are well-typed . Normally, this is in reference to some specific
type system, but we will not consider this here. Instead, we will simply assume that if
we have a term u and u →∗ v, then none of the following forbidden subterms appear in
v:

F ::= (T t) u | match λx.t with T x ⇒ u end

| match S t with T x ⇒ u end (S /∈ T )

| match S un with T x ⇒ t | S ym ⇒ v | T x ⇒ t end (n ̸= m)

Each of these subterms corresponds to an operation the type system should have pre-
vented: applying a constructor, matching on a λ-abstraction, or a match operation where
the constructor being matched and the pattern matching case do not make the same as-
sumptions about the name of the constructor or its arity.
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2.10.3. Fixpoints

The third extension we will consider is the presence of fixpoints. It is an extension of
constructors and allows us to perform computations over recursive data structures in a
typed setting.6 We extend terms and contexts as shown below, with n a positive integer:

t ::= · · · | fixn f xn := t end

C ::= · · · | fixn f xn := C end

H ::= · · · | (fixn f xn := t end) un−1 H

We also extend 7→ι with the following rule:

(fixn f xn := t end) un−1 (T v)

7→ι (λx
n.t[f := fixn f xn := t end]) un−1 (T v)

The idea behind this rule is to replace f with the definition of the fixpoint inside its body,
but only perform this substitution if the n-th argument has a constructor as its head.
With the guard condition imposed by Coq, which ensures recursive calls are decreasing
in their n-th arguments, this is enough to make such fixpoint definitions strongly nor-
malising. Worthy of note is also the way we have extended head contexts to account for
reduction in the n-th argument of a fixpoint in order to get a constructor as the head.

We also need to extend the forbidden subpatterns to account for the typing of fixpoints,
since the last argument of a fixpoint needs to be a constructor, and partially-applied
fixpoints are not constructors either:

F ::= . . .

| match (fixn f xn := t end) um with T y ⇒ v end (m < n)

| (fixn f xn := t end) un−1 (λy.v)

| (fixn f xn := t end) un−1 ((fixm f ym := v end) wp) (p < m)

6In an untyped setting, a fixpoint combinator can be defined, such as Curry’s Y combinator
λf.(λx.f (x x)) (λx.f (x x))
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3. Formal verification and Coq

3.1. A first Coq proof

In the introduction, we mentioned type theory, a possible axiomatisation of mathematics,
and Coq, a proof assistant based on the calculus of constructions, an extension of type
theory. Let us first consider what a proof assistant is. A proof assistant is a software
tool which allows one to formalise and prove mathematical1 theorems, with the computer
being able to verify that the user-supplied proofs are correct.

For instance, the example below defines the divisibility relation divides p n over N,
which corresponds to p | n in mathematical notation, as ∃q ∈ N. n = qp. It then shows
that ∀n ∈ N, n | n and that ∀p, n,m ∈ N, p | n ⇒ p | mn.

Definition divides (p: nat) (n: nat) := exists q: nat, n = q * p.

Theorem divides_refl:
forall n, divides n n.

Proof.
intros. exists 1. simpl. auto.

Qed.

Theorem divides_multiple:
forall p n m, divides p n -> divides p (m * n).

Proof.
intros p n m D. destruct D as [q EQ]. subst n.
exists (m * q). apply Nat.mul_assoc.

Qed.

Knowing this, what does it mean for the proof assistant? First, that we need to state
the theorems and properties we want to prove. This is done by communicating with the
software in a given language, called the term language in Coq; it is the language used to
write definitions and the statements of theorems. Unlike Coq, in some proof assistants
based on first-order logic, there is a clear distinction between the expressions, designating
objects, and the propositions, used to state theorems. Yet, both these languages are

1When we say mathematical here, we mean anything that is both purely abstract and can be obtained
from formal deduction rules as mentioned in the introduction, which includes most of logic, mathe-
matics and computer science, but even some things in the domain of philosophy: for instance, Gödel’s
ontological proof of existence of God has been formalised in Coq [BWP17].
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closely related: except in rare cases, propositions are statements about expressions, and
it makes little sens to say that they are different languages entirely. Therefore, we will
unify them even in this case and call the union of them the term language. For instance,
in the above example, divides p n, m * n and forall n, divides n n are all part of
the term language.

Second, as the user supplies the proof in proof assistants (unlike theorem provers, which
try to automatically prove the statements that are given to them), we need to be able
to communicate them to the proof assistant. In Coq, as in all proof assistants based on
pure type systems, a particular kind of type theory, proofs can be written directly in the
term language. However, it is quite hard to directly write proofs in this form, so Coq,
like many proof assistants,2 exposes another language called the tactic language, which
allows the user to write proofs in an interactive manner, and even to write some code
which automates repetitive parts of the proofs,3 to write tactics performing uninteresting
computations, or even to use external theorem provers and to import their proofs back
into the proof assistant! In Coq, Proof. introduces a proof written in the tactic language
and Qed. ends it: for instance, intros. or destruct D as [q EQ]. are both part of the
tactic language.

In Coq, the term language is called Gallina, while the tactic language is called Ltac, with a
newer version of it called Ltac2. Being based on the calculus of inductive constructions,
an extension of pure type systems, Coq terms can express computation, allowing to
formalise facts about programs that can be run within Coq.4 For instance, we can define
the factorial function as a recursive function, show that ∀n,m, n ≤ m → n! | m!, and
even compute the value of 5!:

Fixpoint factorial (n: nat) : nat :=
match n with
| O => 1
| S n' => n * factorial n'
end.

Theorem divides_factorial:
forall n m, n <= m -> divides (factorial n) (factorial m).

Proof.
Local Opaque mult.
induction m as [ | m']; intros LE.
- (* Case m = 0 *)

2But not all: for instance, Agda does not, and instead supplies interactive tools for the user to directly
write their proof in the term language.

3In fact, some proof assistants such as HOL4 even use a general-purpose programming language as the
tactic language for this exact reason.

4However, it is important to note that Gallina is not a Turing-complete language, as all Gallina programs
terminate. This is necessary to ensure the correctness of Coq, and does not prevent proving facts
about non-terminating programs, although these programs have to be encoded in some way (fuel,
monads, deep embeddings, ...) to express them.
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assert (n = 0) by lia. subst n. exists 1; reflexivity.
- (* Case m = S m' *)

apply Nat.le_succ_r in LE. destruct LE.
+ (* Case n <= m' *)

simpl. apply divides_multiple. apply IHm'. auto.
+ (* Case n = m *)

subst n. apply divides_refl.
Qed.

Compute (factorial 5). (* = 120 : nat *)

3.2. Proofs by computational reflection

A crucial part of Coq is that terms and propositions exist only up to computation: for
instance, 2 + 2 = 4 and 4 = 4 are exactly the same theorem, and reflexivity of equality
(∀x, x = x) is a valid proof of 2+2 = 4. This also means that proofs that can be fully done
by computation are simple, and all the steps of the computation need not to be encoded
inside the proof itself, as we can see in the following Coq example: while we could give
a standard proof using various theorems, a simpler proof is to use reflexivity, which
will produce a proof term simply equal to eq_refl 4, the proof of 4 = 4, which is also
a proof of 2 + 2 = 4 up to computation.

Remark two_plus_two: 2 + 2 = 4.
Proof.

(* By deduction *)
rewrite Nat.add_succ_l. rewrite Nat.add_succ_l. rewrite Nat.add_0_l. auto.

Restart.
(* By computation *)
reflexivity.

Qed.

Print two_plus_two. (* = eq_refl : 2 + 2 = 4 *)

This is akin to the distinction between verification and proof expressed by Poincaré
more than a century ago [Poi94]: “La « vérification » diffère précisément de la véritable
démonstration, parce qu’elle est purement analytique et parce qu’elle est stérile.” —
verification differs from true demonstration, because it is purely analytical and sterile.
By “sterile”, Poincaré meant that no ideas are necessary in computation: it is a simple
series of steps. In modern terms, we might say that it is a decidable operation, and,
furthermore, by a simple algorithm.

Formally, this is encoded as the convertibility rule: if t has type A, and if A and
B are convertible, then t has type B as well. This leads to a whole new sort of
proofs, related to computer-aided proofs in mathematics, called proofs by reflection.
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For those proofs, we want to prove a statement P x, where P is a property of a typ-
ically large object x; for instance, graph 4-colourability in the proof of the 4-colour
theorem. Instead of directly doing that, as it would require writing and having the
proof assistant check a large proof, we instead write a program prove_P, and establish
that forall x, prove_P x = true -> P x. Being independent of x, this property is
typically simpler to prove than P x would be directly. However, we can then use it to
establish it is enough to prove prove_P x = true, and directly prove this by reflexiv-
ity, the left-hand side performing the computation and proof for us, without needing to
check anything again! A simple example, for divisibility, is shown below. Note how, in
particular, we did not need to compute the divisibility witness 17 ourselves in the proof
by reflection: it comes from the proof of dec_divides_sound.

Definition dec_divides (p: nat) (n: nat) : bool := n mod p =? 0.

Lemma dec_divides_sound: forall p n, dec_divides p n = true -> divides p n.
Proof.

intros p q H. apply Nat.eqb_eq in H. apply Nat.Div0.div_exact in H.
exists (q / p). lia.

Qed.

Remark divides_13_221: divides 13 221.
Proof.

(* By deduction *)
exists 17; auto.

Restart.
(* By reflection *)
apply dec_divides_sound. reflexivity.

Qed.

Print divides_13_221. (* = dec_divides_sound 13 221 eq_refl *)

Proofs by reflection can involve large amounts of computation. Although more narrowly-
scoped methods of proving convertibility exist for this special case, this still explains
why we care about the efficiency of convertibility. Besides, they are far from the only
use case for an efficient convertibility test! Indeed, almost every proof step will require
some convertibility checking to ensure it is correct; and, more importantly, proof search
by Ltac or other tactic languages require convertibility tests, to know what is possible
to do and what is not. Besides, in this case, it is important to fail as fast as possible,
to ensure proof search remains efficient: we no longer only care about checking that two
terms are convertible, but we want to decide if they are.

Thus, we can see how convertibility tests are a critical part of proof search and verifica-
tion; moreover, it is a well-defined and isolated part of it, and as such is very amenable
to being formally verified.
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3.3. Trusted code base

As we discussed concerning the tactic language, we can go all the way to using external
tools to prove theorems. However, a question remains: what code do we need to trust
to be correct if we want to be sure a given theorem, whose proof was checked by a proof
assistant, is true? First, we need to trust that our theorem is correctly stated, and that
the definitions used in its statement are correct. While this seems obvious, there might
already be errors there: if we prove that 2 + 3× 4 = 14, but the user incorrectly thinks
this should be understood as (2 + 3)× 4 = 14, we already have a problem.

Another thing we need to trust is the system of axioms and deduction rules of the proof
assistant, since consistency proofs for these logics are difficult. As some systems are
inconsistent and allow to prove any theorems, our proof would still be correct inside
the axiom system used; but it wouldn’t state anything useful. Following the chain of
implementation, we need to trust the critical part of the proof assistant, which is often
the part that checks that proofs are correct. Crucially, this is not the entire proof
assistant: for instance, almost nothing in the tactic language needs to be trusted, as it
simply translates the language used to write the proof to internal proof terms.

Further down the chain, we also need to trust the implementation of the programming
language used to write the proof assistant (and even its compiled binary, as shown by
Thompson [Tho84]), the operating system it runs on, the firmware and the hardware of
the machine we use to run it, even that the hardware is sufficiently shielded from external
influence such as cosmic rays...

As outlined above, there are many parts that need to be relied on, and only a few directly
related to the proof assistant itself. Therefore, when trying to formally verify a proof
assistant, we need to decide what the scope of the trusted code base is. In our case, the
only part we are really interested in is the trusted code base of the proof assistant itself,
and not everything the assistant relies on to run!5

5However, there are other projects which are interested in formally verifying other things, for instance
CompCert and CakeML for programming languages, SEL4 for operating systems, or Kami for hard-
ware; which do not directly interest us.
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Part II.

Strong call-by-need
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4. Big-step semantics for strong
call-by-need

In this part, we aim for an implementation of strong call-by-need for the λ-calculus.
However, call-by-need semantics are often more complicated than corresponding call-by-
value or call-by-name semantics, due to them often needing mutable state.

Besides, there are two ways of seeing call-by-need as variations of other evaluation orders
of λ-calculus: one is a lazy call-by-value, the other is a memoizing call-by-name. In our
case, we will express our call-by-need semantics by memoizing call-by-name semantics.
Thus, we start with strong call-by-name semantics for the λ-calculus, in extension of the
weak call-by-name semantics we saw in section 2.6.

4.1. Starting with call-by-name

The first step towards having a strong call-by-name semantics for the λ-calculus is spec-
ifying the normal forms. A term is in normal form if, and only if, it does not contain
a subterm of the form (λx.t) u. Thus, it is either a variable x, a λ-abstraction λx.t, in
which case t must also be in normal form, or an application t u, where t and u must be
in normal form, and t must not be a λ-abstraction.

We thus get a grammar for normal forms, with i the inert normal forms, those which are
not λ-abstractions, and r the general normal forms.

Normal forms r ::= i | λx.r
Inert forms i ::= x | i r

Now that we know what normal forms are, we can get a small-step semantics for strong
call-by-name.

In call-by-name, we only reduce the right-hand side of applications, if the left-hand side
is already in normal form and is not a λ-abstraction. Besides, if the left-hand side is a λ-
abstraction, we reduce the redex instead of reducing under the abstraction. Indeed, if we
first reduced below the abstraction, we might reduce some redexes that would otherwise
disappear by reducing the outer redex first.1 Thus, we can restrict the reduction contexts

1Consider for instance the following term (where t is any term containing a redex): (λx.x t) (λy.z).
If we reduced under the λ-abstraction before reducing the outermost redex, we would be able to
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to the following, where Cr is the reduction context, and Ci the inert contexts, those which
are not λ-abstractions. We see that these contexts are very similar in structure to the
definitions of normal forms. This is intended, as we have chosen those contexts precisely
to get the unique decomposition theorem (since we wanted to specify an evaluation order),
and to prove this unique decomposition theorem, naturally by induction on the structure
of the term, the definitions have to be close enough so that we can use the induction
hypothesis.

Cr ::= Ci | λx.Cr

Ci ::= □ | Ci t | i Cr

From this definition, we can check that each term is either a normal form r, or can be
written in a unique way as Cr[(λx.t) u], so the small-step semantics we get by restricting
β-reduction to those contexts Cr is deterministic. This reduction order is known as the
normal evaluation order , also called the leftmost-outermost evaluation order : at each
step, we reduce the leftmost redex, and in the case of overlapping redexes, we reduce the
outermost one. This evaluation order is also famous because it is normalising: reduction
always terminates if the original term is weakly normalising[Bar67].

Next, we can derive big-step semantics from this small-step semantics. We will define
two mutually recursive relations, ⇓s and ⇓d. In ⇓s, which we call shallow reduction, the
possible values are i | λx.t, and in ⇓d, which we call deep reduction, they are r = i | λx.r.
Note how only the λ-abstractions differ between both kinds of values and inert terms are
shared: this will allow us to share parts of the rules below between them.

These relations actually express that v is the normal form for t in the C-closure of 7→β ,
where C is Ci for ⇓s and Cr for ⇓d.

The big-step semantics we obtain that way are as follows, where f means either s or d :2

Var

x ⇓f x

Lam-S

λx.t ⇓s λx.t

Lam-D
t ⇓d r

λx.t ⇓d λx.r

App-λ
t1 ⇓s λx.t3 t3[x := t2] ⇓f v

t1 t2 ⇓f v

App-I
t1 ⇓s i t2 ⇓d r

t1 t2 ⇓f i r

To show a bit more how we obtain those rules, consider the relation ⇓s, where we want
to get a normal form for the Ci-closure of 7→β . Consider a term t, and let us see the

reduce redexes occurring inside t, as x is itself in normal form. However, by reducing the outer redex
first, the term becomes (λy.z) t, where the only reduction allowed gives us z where t has completely
disappeared, thus making any reduction inside t eventually useless.

2f stands for flag, as in a Boolean flag that means whether to reduce shallowly or deeply.
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possible ways we have to write it. If t is an abstraction λx.t or a variable x, then it is
already a normal form, and the normal form of t is equal to t, as seen in the Var and
Lam-S rules above. Otherwise, t is an application t1 t2. Since, by definition of Ci, we can
reduce t1 until it is in normal form, and since we have uniqueness of the decomposition
into a redex and a context while t1 is not a normal form, there exists a way to decompose
t as a context and a redex inside t1, meaning no other reduction is possible in t. Thus,
t has exactly the same normal form as u t2, where u is the normal form of t1 (and t
has no normal form if t1 has none). There are two possibilities for u: either it is of the
form λx.t3, in which case the only possible reduction is the reduction of the (λx.t3) t2
redex, and the normal form of t is the same as the one of the result of this reduction,
and we get the App-λ rule. The other possibility is for u to be of the form i, and in this
case the only possible reductions in t are those inside t2 until it is of the form r. At this
point, t becomes of the form i r and is a normal form, resulting in the rule App-I. We
can perform a similar analysis for the ⇓d case, where the only difference is the handling
of λ-abstractions, under which we perform reductions, thus leading to the presentation
above where we share the rules for the two reduction relations when they are similar.

Next, we try to avoid handling substitutions in the application rule; instead, we will use
an environment mapping variables to terms, themselves with environments, as in the
KAM. Sometimes, a variable does not correspond to an argument of a function but is
instead a free variable (due to the Lam-D rule), and we represent this in the environment
by mapping the variable to a variable name.

e ::= ∅ | e ⋆ (x 7→ b)

b ::= x | (t, e)

We can interpret a binding b as a term using the following readback functions, as in
abstract machines:

read(x) = x

read((t, e)) = t[x := u]

x = dom(e)

∀i, ui = read(e(xi))

We now define a new evaluation relation e ⊢ t ⇓f v with the property that if e ⊢ t ⇓f v,
then read(t, e) ⇓f v. The definition is straightforward from the definition of ⇓f , and
we obtain the rules in Figure 4.1. We can also see that rule Lam-D maps x to a fresh
variable y instead of using x, as x might be free in the environment e and we need to
avoid accidental capture.
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Var-F
e(x) = y

e ⊢ x ⇓f y

Var-C
e(x) = (t, e′) e′ ⊢ t ⇓f v

e ⊢ x ⇓f v

Lam-S

e ⊢ λx.t ⇓s (λx.t, e)

Lam-D
e ⋆ (x 7→ y) ⊢ t ⇓d r y fresh

e ⊢ λx.t ⇓d λy.r

App-λ
e ⊢ t1 ⇓s (λx.t3, e

′) e′ ⋆ (x 7→ (t2, e)) ⊢ t3 ⇓f v

e ⊢ t1 t2 ⇓f v

App-I
e ⊢ t1 ⇓s i e ⊢ t2 ⇓d r

e ⊢ t1 t2 ⇓f i r

Figure 4.1.: Rules for e ⊢ t ⇓f v.

4.2. From call-by-name to call-by-need

From our big-step semantics of strong call-by-name, we can express call-by-need seman-
tics using memoization. However, with two reduction relations, naïve memoization of
the same derivations is not sufficient. For instance, consider the following term t, where
u is a term depending on the value of x and taking a long time to compute:

t = λx.(λy.λz.y) u

Here, computing t v returns a constant function that always returns the value of eval-
uating u in the environment (x 7→ v). However, this takes a long time to compute;
and with the current semantics, we will independently memoize the results r1 given by
(x 7→ v) ⊢ u ⇓s r1 and r2 given by (x 7→ v) ⊢ u ⇓d r2. This is unfortunate, because these
values are very closely related: in particular, if r1 is inert, then r2 = r1.

Our strategy to deal with this is to give explicit transfer lemmas relating the result of
shallow and deep reductions. One of these lemmas is related to inert terms:

Lemma 4.1 (Transfer lemma, inert terms) For all terms t, environments e and in-
ert terms i, we have:

(e ⊢ t ⇓s i) ⇔ (e ⊢ t ⇓d i).

This lemma is straightforward to prove by induction over both derivations, and allows the
memoization to work independently of which reduction relation was used. However, the
case where the results are λ-abstractions is more complicated. We still easily compute
the deep form from the shallow form, as shown in the following lemma:
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Lemma 4.2 (Transfer lemma, λ-abstractions, shallow-to-deep) For all terms
t, u, environments e, e′, if e ⊢ t ⇓s (λx.u, e

′), then for all values v we have:

(e ⊢ t ⇓d v) ⇔ (e′ ⊢ λx.u ⇓d v).

In other words, once we have the result from shallow reduction, we only have to reduce
it using deep evaluation to get the normal form, instead of starting from the beginning!

Unfortunately, computing the shallow form from the deep one does not work so well.
Indeed, when we have e ⊢ t ⇓d λx.r, the original form of the abstraction is lost and
only the normal form λx.r remains.3 However, we have already computed it, so the only
change we need is to remember it!

Thus, we modify the rules of our strong-call-by-name semantics to preserve this infor-
mation, by making the results of deep reduction be of the form r | (λx.t, e, λx.r), with
the first two elements being the original λ-abstraction and its environment. For this, we
need to redefine the two rules Lam-D and App-I, and we define the following function
nf which extracts the original result of deep reduction from the new results:

nf(i) = i

nf(λx.t, e, λx.r) = λx.r

Lam-D’
e ⋆ (x 7→ y) ⊢ t ⇓d r y fresh
e ⊢ λx.t ⇓d (λx.t, e, λy.nf(r))

App-I’
e ⊢ t1 ⇓s i e ⊢ t2 ⇓d r

e ⊢ t1 t2 ⇓f i (nf(r))

Now that this change is done, we have the remaining transfer lemma:

Lemma 4.3 (Transfer lemma, λ-abstractions, deep-to-shallow) For all terms
t, u, normal forms r, environments e, e′, if e ⊢ t ⇓d (λx.u, e

′, λx.r), then we have:

e ⊢ t ⇓s (λx.u, e
′).

Once this is done, we only have to extend the semantics to express memoization explicitly.
For this, we use a store containing lazy values or their result (either shallow or deep), and
function application allocates a new lazy value. Thus, the value of a memory location
can be one of:

3While it would be possible to use the normal form instead of the original form, this is not compatible
with our condition of never reducing under an abstraction before applying it allowing compatibility
with compiled code. Besides, even if we dropped this requirement and wanted to use the normal
form, we would need to handle terms with sharing inside the input instead of the output only, as
sharing introduced by the reduction under the abstraction would be otherwise lost!
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App-λ
e,m1 ⊢ t1 ⇓s S (λx.t3, e

′),m2 e′ ⋆ (x 7→ a), (a 7→ L (t2, e)) ⋆ m2 ⊢ t3 ⇓f v,m3

e,m1 ⊢ t1 t2 ⇓f v,m3

App-I
e,m1 ⊢ t1 ⇓s I i,m2 e,m2 ⊢ t2 ⇓d r,m3

e,m1 ⊢ t1 t2 ⇓f I (i (nf(r))),m3

Lam-S

e,m ⊢ λx.t ⇓s S (λx.t, e),m

Lam-D
e ⋆ (x 7→ a), (a 7→ I x) ⋆ m1 ⊢ t ⇓d r,m2

e,m1 ⊢ λx.t ⇓d D (λx.t, e, λx.(nf(r)))),m2

Var
m1 ⊢ e(x)⇝f v,m2

e,m1 ⊢ x ⇓f v,m2

Force-Lazy
e, (a 7→ □) ⋆ m1 ⊢ t ⇓f v, (a 7→ □) ⋆ m2

(a 7→ (t, e)) ⋆ m1 ⊢ a⇝f v, (a 7→ v) ⋆ m2

Force-I
m(a) = I i

m ⊢ a⇝f I i,m

Force-DS
m(a) = D (λx.t, e′, λx.r)

m ⊢ a⇝s S (λx.t, e′),m

Force-DD
m(a) = D (λx.t, e′, λx.r)

m ⊢ a⇝d D (λx.t, e′, λx.r),m

Force-SS
m(a) = S (λx.t, e′)

m ⊢ a⇝s S (λx.t, e′),m

Force-SD
e, (a 7→ □) ⋆ m1 ⊢ λx.t ⇓d v, (a 7→ □) ⋆ m2

(a 7→ S (λx.t, e)) ⋆ m1 ⊢ a⇝d v, (a 7→ v) ⋆ m2

Figure 4.2.: Big-step rules for strong call-by-need.

• L (t, e), a lazy value,

• I i, an inert value,

• S (λx.t, e), the value of a λ-abstraction whose normal form has not yet been com-
puted,

• D (λx.t, e, λx.r), the value of a λ-abstraction with normal for λx.r,

• and □, a special symbol meaning the value is currently being computed.

We also introduce an inductive relation m1 ⊢ a ⇝f v,m2 which computes the actual
value v corresponding to the memory location a, forcing delayed computations if needed,
in order to deduplicate the rules concerning variables. The rules concerning applications
and λ-abstractions are mostly unchanged, while the rules concerning variables apply the
transfer lemmas if necessary. The rules thread the store through the evaluations, and are
shown in Figure 4.2.
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Here, we can see that the rules App-I and Lam-S remain the same, except for the explicit
tagging of each type of values and the threading of the store. The rules App-λ and Lam-
D allocate a fresh cell for the variable besides adding it to the environment, but the rules
stay otherwise identical as well. The rules that really change are the ones concerned
with variables. Var factorises the next rules along the memory location, which is the
part common to all rules. Force-Lazy replaces the old Var-C rule, by evaluating the
lazy value, and then updating the environment to mark the value as evaluated. During
computation, the value is replaced by a marker □ to explicitly show that this value
cannot be accessed during that time, which we can prove by showing our store always
remains acyclic. After the value is computed, the environment is updated to store the
new value and the value is returned. The rule Force-I subsumes the previous rule Var-
F, by handling both free variables and results of lazy values which were inert. The four
remaining rules handle getting the result of shallow or deep reduction of a variable when
the store already contains a shallow or deep result. Two of these rules, Force-SS and
Force-DD are very simple, and simply return the stored value when it corresponds to
what is asked. The rule Force-DS simply extracts the shallow part of a deep value
(which is possible thanks to the extended values). Finally, the rule Force-SD asks
the deep value of a variable for which we only have the shallow value. To do this, we
evaluate the λ-abstraction in a deep setting in the corresponding environment (using the
rule Lam-D), and then replace the stored value with the new deep result, to memoize
the computation for future uses.

4.3. An alternate presentation: eval/deepen

Our presentation of strong call-by-need (and call-by-name) semantics above has two
evaluation modes, shallow and deep. Extracting a shallow value from a deep value is
straightforward and does not perform any additional computation, but there is compu-
tation to transform a shallow value into a deep value.

We can give an alternate presentation, where the evaluation always computes a shallow
value, and we have another conversion, called deepening , from shallow to deep values
that can perform additional computation, which is of course memoized. There is now
two evaluation relations: e,m1 ⊢ t ⇓ v,m2, which reduces t to value v in environment e,
changing memory from m1 to m2, and m1 ⊢ v

⇛

r,m2, which reduces value v to normal
form r, changing memory from m1 to m2.

For λ-abstractions, we now only use D (λx.t, e, a), with the change that a is now a lazy
reference to the normal form instead of the normal form. To do this, we need to introduce
lazy values for the normal form of a λ-abstraction Lλ (λx.t, e), lazy values which have
already been computed N r, and a forcing relation m1 ⊢ a ⇛ r,m2. The complete rules
are shown in Figure 4.3.

The rules App-λ, App-I, Var and Force-Lazy are very similar to the ones existing in
Figure 4.2 for ⇓s, with e,m2 ⊢ t2 ⇓ v,m3 and m3 ⊢ v

⇛

r,m4 replacing the previous
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App-λ
e1,m1 ⊢ t1 ⇓ D (λx.t3, e2, a),m2 e2 ⋆ (x 7→ a), (a 7→ L (t2, e1)) ⋆ m2 ⊢ t3 ⇓ v,m3

e1,m1 ⊢ t1 t2 ⇓ v,m3

App-I
e,m1 ⊢ t1 ⇓ I i,m2 e,m2 ⊢ t2 ⇓ v,m3 m3 ⊢ v

⇛

r,m4

e,m1 ⊢ t1 t2 ⇓ I (i r),m4

Lam

e,m ⊢ λx.t ⇓ D (λx.t, e, a), (a 7→ Lλ (λx.t, e)) ⋆ m

Var
m1 ⊢ e(x)⇝ v,m2

e,m1 ⊢ x ⇓ v,m2

Force-Lazy
e, (a 7→ □) ⋆ m1 ⊢ t ⇓ v, (a 7→ □) ⋆ m2

(a 7→ L (t, e)) ⋆ m1 ⊢ a⇝ v, (a 7→ v) ⋆ m2

Force-Val
m(a) = v v is not a lazy value

m ⊢ a⇝ v,m

ForceDeep-λ
e ⋆ (x 7→ b), (a 7→ □) ⋆ (b 7→ I y) ⋆ m1 ⊢ t ⇓ v, (a 7→ □) ⋆ m2

(a 7→ □) ⋆ m2 ⊢ v

⇛

r, (a 7→ □) ⋆ m3

(a 7→ Lλ (λx.t, e)) ⋆ m1 ⊢ a⇛ λy.r, (a 7→ N (λy.r)) ⋆ m3

ForceDeep-V
m(a) = N r

m ⊢ a⇛ r,m

Deepen-I

m ⊢ I i

⇛

i,m

Deepen-λ
m1 ⊢ a⇛ r,m2

m1 ⊢ D (λx.t, e, a)

⇛

r,m2

Figure 4.3.: Big-step strong call-by-need in eval-deepen presentation.
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e,m2 ⊢ t2 ⇓d r,m4, which is what we do in general instead of ⇓d. The Lam rule
allocates a fresh variable and a fresh location for the lazy body of the normal form, and
the rule Force-Val factorises the rules Force-I, Force-SS and Force-DS. Finally,
ForceDeep-λ and ForceDeep-V force the body of a λ-abstraction and deepens it
to return its normal form, or returns an already-computed result, while Deepen-I and
Deepen-λ extract the normal form from shallow values, forcing it if necessary.

4.4. Constructors and pattern matching

When introducing constructors and pattern matching, we extend the normal forms as
well. Using the well-typedness property, there are still only two sorts of normal forms,
with the following definitions:

r ::= · · · | T r

i ::= · · · | match i with T x ⇒ r end

Likewise, we can extend the contexts to handle these new terms:

Cr ::= · · · | T (r, Cr, t)

Ci ::= . . .

| match Ci with T x ⇒ r end

| match i with T x ⇒ r | S y ⇒ Cr | T x ⇒ t end

Here, we use T (r, Cr, t) instead of T (t, Cr, t) for Cr (and likewise for cases of a match),
to ensure we keep the unique decomposition as a context and a redex; this causes evalu-
ation to happen left-to-right.

Once this is done, we can extract big-step call-by-name semantics as before, whose rules
are shown in Figure 4.4. We can see that the handling of constructors is very similar
to the handling of λ-abstractions, while for match, it is very similar to applications.
This is not surprising, since constructors happen in the same kind of normal forms r
and contexts Cr as λ-abstractions, and likewise for match and applications appearing
in inert normal forms i and contexts Ci.

The definition of call-by-name semantics with environments is straightforward, so we
directly jump to the definition of call-by-need semantics. For this, we have two new types
of values, B (T, a), the shallow value for a constructor T with lazy values as arguments,
and C (T, a, T r), the deep value for this constructor, carrying the normal form with it as
well as the shallow value. The additional rules for our call-by-need semantics are quite
natural given the existing rules, and are given in Figure 4.5.
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4. Big-step semantics for strong call-by-need

Constr-S

T t ⇓s T t

Constr-D
∀i, ti ⇓d ri

T t ⇓d T r

Switch-C
t1 ⇓s S un t2[y

n := un] ⇓f v

match t1 with T x ⇒ w | S yn ⇒ t2 | T x ⇒ w end ⇓f v

Switch-I
t ⇓s i ∀k, uk ⇓d rk

match t with T x ⇒ u end ⇓f match i with T x ⇒ r end

Figure 4.4.: Big-step call-by-name rules for constructors and pattern matching.

Constr-S

e,m ⊢ T t ⇓s B (T, a), (a 7→ L (t, e)) ⋆ m

Constr-D
m0 = (a 7→ L (t, e)) ⋆ m ∀i, e,mi−1 ⊢ ti ⇓d ri,mi

e,m ⊢ T t
n ⇓d C (T, a, T nf(r)),mn

Switch-C
e,m1 ⊢ t1 ⇓s B (S, an),m2 e ⋆ (y 7→ a),m2 ⊢ t2 ⇓f v,m3

e,m1 ⊢ match t1 with T x ⇒ u | S yn ⇒ t2 | T x ⇒ u end ⇓f v,m3

Switch-I
e,m ⊢ t ⇓s I i,m0 ∀k, e ⋆ (xk 7→ ak), (ak 7→ I yk) ⋆ mk−1 ⊢ uk ⇓d rk,mk

e,m ⊢ match t with T x ⇒ u
n
end ⇓f I (match i with T y ⇒ nf(r) end),mn

Force-ConstrDS
m(a) = C (T, b, T r)

m ⊢ a⇝s B (T, b),m

Force-ConstrDD
m(a) = C (T, b, T r)

m ⊢ a⇝d C (T, b, T r),m

Force-ConstrSS
m(a) = B (T, b)

m ⊢ a⇝s B (T, b),m

Force-ConstrSD
∀i, (a 7→ □) ⋆ mi−1 ⊢ bi ⇝d ri, (a 7→ □) ⋆ mi

(a 7→ B (T, b
n
)) ⋆ m0 ⊢ a⇝d C (T, b

n
, T nf(r)), (a 7→ C (T, b

n
, T nf(r))) ⋆ mn

Figure 4.5.: Big-step call-by-need rules for constructors and pattern matching.
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4.5. Fixpoints

Constr

e,m ⊢ T t ⇓ C (T, a, b), (a 7→ L (t, e)) ⋆ (b 7→ LC (T, a)) ⋆ m

Switch-C
e,m1 ⊢ t1 ⇓ C (S, an, b),m2 e ⋆ (y 7→ a),m2 ⊢ t2 ⇓ v,m3

e,m1 ⊢ match t1 with T x ⇒ u | S yn ⇒ t2 | T x ⇒ u end ⇓ v,m3

Switch-I
e,m ⊢ t ⇓ I i,m0

∀k, e ⋆ (xk 7→ ak), (ak 7→ I yk) ⋆ mk−1 ⊢ uk ⇓ vk,m
′
k m′

k ⊢ vk

⇛

rk,mk

e,m ⊢ match t with T x ⇒ u
n
end ⇓ I (match i with T y ⇒ r end),mn

ForceDeep-C
∀i, (a 7→ □) ⋆ mi−1 ⊢ bi ⇝ vi, (a 7→ □) ⋆ m′

i (a 7→ □) ⋆ m′
i ⊢ vi

⇛

ri, (a 7→ □) ⋆ mi

(a 7→ LC (T, b
n
)) ⋆ m0 ⊢ a⇛ T r, (a 7→ N (T r)) ⋆ mn

Deepen-C
m1 ⊢ b⇛ r,m2

m1 ⊢ C (T, a, b)

⇛

r,m2

Figure 4.6.: Eval-deepen rules for constructors and pattern matching.

Like in section 4.3, we can also give an eval/deepen presentation for this. To do that, we
only need to introduce lazy deep constructor values LC (T, a), the rest of the machinery
having already been introduced. The rules are given in Figure 4.6.

4.5. Fixpoints

As with constructors, we have to extend the normal forms and the contexts, and we
use the well-typedness property to restrict the possibilities. The new normal forms and
contexts are shown in Figure 4.7. We can see that due to the complexity generated by
fixpoints forcing their n-th argument before being unfolded, the contexts become quite
complex.

Then, once again, we extract big-step call-by-name semantics, shown in Figure 4.8. Due
to the way fix values are used, most of the new rules are rules for reduction of an
application. The two rules Fix-S and Fix-D simply reduce fix terms to fix values,
whereas the following rules deal with how these values are applied to arguments. The
rules App-Fix-S and App-Fix-D simply state that under-applied fix values remain fix
values, while App-Fix-C and App-Fix-I force the last argument applied to a fix value.
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4. Big-step semantics for strong call-by-need

r ::= · · · | fixn f xn := r end rm (m < n)

i ::= · · · | fixn f xn := r end rn−1 i

Cr ::= . . .

| fixn f xn := Cr end rm (m < n)

| fixn f xn := t end rm Cr t
p

(m+ p+ 1 < n)

Ci ::= . . .

| fixn f xn := t end t
n−1

Ci

| fixn f xn := Cr end rn−1 i

| fixn f xn := t end rm Cr t
n−2−m

i

Figure 4.7.: Normal forms and contexts for fixpoints.

Fix-S

fixn f xn := t end ⇓s fixn f xn := t end

Fix-D
t ⇓d r

fixn f xn := t end ⇓d fixn f xn := r end

App-Fix-S
t1 ⇓s fixn f xn := t3 end um m < n− 1

t1 t2 ⇓s fixn f xn := t3 end um t2

App-Fix-D
t1 ⇓s fixn f xn := t3 end um m < n− 1 t3 ⇓d r ∀i, ui ⇓d ri t2 ⇓d r

′

t1 t2 ⇓d fixn f xn := r end rm r′

App-Fix-C
t1 ⇓s fixn f xn := t3 end un−1

t2 ⇓s T w t3[f, x
n := fixn f xn := t3 end, un−1, T w] ⇓f v

t1 t2 ⇓f v

App-Fix-I
t1 ⇓s fixn f xn := t3 end un−1 t2 ⇓s i t3 ⇓d r ∀i, ui ⇓d ri

t1 t2 ⇓f fixn f xn := r end rn−1 i

Figure 4.8.: Big-step call-by-name rules for fixpoints.
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4.5. Fixpoints

If it reduces to a constructor, the function is unfolded, while if it does not, the normal
forms of the body and arguments are computed and an inert term is created.

There are no new ideas used to extract the call-by-need semantics from the call-by-name
semantics, so we will only show them for completeness in Figure 4.9. They are in the
eval/deepen presentation, as it is the simplest presentation, even if it is already quite
complex.

47



4. Big-step semantics for strong call-by-need

Fix
m′ = (a 7→ Lfix (fixn f xn := t end, e)) ⋆ m

e,m ⊢ fixn f xn := t end ⇓ F (fixn f xn := t end, e, [], a),m′

App-Fix
e,m1 ⊢ t1 ⇓ F (fixn f xn := t end, e2, a

p, b),m2

p < n− 1 m3 = (c 7→ L (t2, e)) ⋆ m2

e,m1 ⊢ t1 t2 ⇓ F (fixn f xn := t end, e2, a
p :: c, b),m3

App-Fix-C
e,m1 ⊢ t1 ⇓ F (fixn f xn−1 y := t end, e2, a

n−1, b),m2 e,m2 ⊢ t2 ⇓ C (T, c, d),m3

m4 = (b′ 7→ F (fixn f xn−1 y := t end, e2, [], b)) ⋆ (d
′ 7→ C (T, c, d)) ⋆ m3

e2 ⋆ (f 7→ b′) ⋆ (x 7→ a) ⋆ (y 7→ d′),m4 ⊢ t ⇓ v,m5

e,m1 ⊢ t1 t2 ⇓ v,m5

App-Fix-I
e,m ⊢ t1 ⇓ F (fixn f xn := t end, e2, a

n−1, b),m′ e,m′ ⊢ t2 ⇓ I i,m0

∀k,mk−1 ⊢ ak ⇝ vk,m
′
k m′

k ⊢ vk

⇛

rk,mk mn−1 ⊢ b⇛ r,m′′

e,m ⊢ t1 t2 ⇓ I (r rn−1 i),m′′

ForceDeep-Fix
e ⋆ (f 7→ b) ⋆ (x 7→ c), (a 7→ □) ⋆ (b 7→ I g) ⋆ (c 7→ I y) ⋆ m1 ⊢ t ⇓ v, (a 7→ □) ⋆ m2

(a 7→ □) ⋆ m2 ⊢ v

⇛

r, (a 7→ □) ⋆ m3 r′ = fixn g yn := r end

(a 7→ Lfix (fixn f xn := t end, e)) ⋆ m1 ⊢ a⇛ r′, (a 7→ N r′) ⋆ m3

Deepen-Fix
∀k,mk−1 ⊢ ak ⇝ vk,m

′
k m′

k ⊢ vk

⇛

rk,mk mp ⊢ b⇛ r,m

m0 ⊢ F (fixn f xn := t end, e2, a
p, b)

⇛

r rp,m

Figure 4.9.: Eval-deepen rules for fixpoints.
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5. Implementing strong call-by-need

5.1. OCaml implementation

To implement strong call-by-need evaluation, we first need to define the type of terms,
and the type of normal forms. Their definition are two simple inductive OCaml types:

type var = string

type term =
| Var of var
| Abs of var * term
| App of term * term

type nf =
| NfVar of var
| NfAbs of var * nf
| NfApp of nf * nf

Note that nf is isomorphic to terms (defining a type that can only contain normal forms
is a bit harder and shown at the end of this section), but we use two distinct types to
distinguish input terms, that we have not yet examined, and output terms, necessarily
in normal form.

Now, we need to chose which semantics we are going to use for writing the evaluator.
The simplest one for this is the eval/deepen semantics, which we are going to use. We
also need environments, mapping variables to value references (needed for laziness), and
a fresh variable name generator.1 Thus, the type of values is as follows:

module VarMap = Map.Make(struct
type t = var
let compare = compare

end)

type value =

1The fresh variable name generator in the code below can generate variables that conflict with existing
ones. However, since only the variables generated by this generator appear in the normal forms, there
is no soundness issue, and we could even use separate types for variables in terms and in normal forms.
If we wanted to be sure variable names were fresh, we could also use a type for variables such as
type var = Named of string | Fresh of int.
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5. Implementing strong call-by-need

| Inert of nf
| Lazy of term * env
| Blackhole
| Closure of env * var * term * nf option ref

and env = value ref VarMap.t

let fresh =
let r = ref 0 in
fun () -> incr r; "_" ^ string_of_int !r

Note that we have done a slight simplification here in the Closure case, where instead
of having a lazy value corresponding to Lλ (λx.t, e), we simply use None, since all the
information we would need is in the closure already. With the preceding definitions, it
is now easy to write the evaluator, simply following the big-step semantics. The main
difference with the eval/deepen semantics is that in the code of deepen, we use the
information stored in the closure instead of information inside a to compute the normal
form if it has not already been computed.

let makelazy t env = ref (Lazy (t, env))

let rec eval t env =
match t with
| Var x -> force (VarMap.find x env)
| Abs (x, t) -> Closure (env, x, t, ref None)
| App (t1, t2) ->

match eval t1 env with
| Lazy _ | Blackhole -> assert false
| Closure (env1, x, body, _) ->

eval body (VarMap.add x (makelazy t2 env) env1)
| Inert i -> Inert (NfApp (i, deepen (eval t2 env)))

and deepen v =
match v with
| Lazy _ | Blackhole -> assert false
| Inert i -> i
| Closure (env, x, t, a) ->

match !a with
| Some nf -> nf
| None ->

let y = fresh () in
let nenv = VarMap.add x (ref (Inert (NfVar y))) env in
let nf = NfAbs (y, deepen (eval t nenv)) in
a := Some nf; nf
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5.2. Exploiting laziness from the host language

and force v =
match !v with
| Blackhole -> assert false
| Lazy (t, env) ->

v := Blackhole;
let r = eval t env in
v := r; r

| v -> v

Note that it is also possible to statically ensure the result is in normal form, by changing
the definition of type nf to only allow normal forms; the type of values has to be changed
as well to ensure inert values are inert normal forms.

type _ nf =
| NfVar : var -> [`inert] nf
| NfAbs : var * _ nf -> [`lambda] nf
| NfApp : [`inert] nf * _ nf -> [`inert] nf

type value =
| Inert of [`inert] nf
| Lazy of term * env
| Blackhole
| Closure of env * var * term * [`lambda] nf option ref

Unfortunately, due to limitations of the OCaml type system, we have to make a couple
of modifications to the code. These are however quite simple and do not modify the
structure of the code as a whole: we introduce a new type any_nf, which can hold values
of both type [`inert] nf and [`lambda] nf. Besides, we introduce smart constructors
mkNfAbs and mkNfApp which work with values of type any_nf as input.

type any_nf = AnyNf : _ nf -> any_nf [@@unboxed]
let mkNfAbs (x, AnyNf t) = NfAbs (x, t) [@@inline]
let mkNfApp (i, AnyNf t) = NfApp (i, t) [@@inline]

With this change, we only have to replace the calls to NfAbs and NfApp by their corre-
sponding smart constructor, and wrap the result of deepen inside an AnyNf constructor
to get a version of the code producing terms which are guaranteed to be normal forms
by their type definition.

5.2. Exploiting laziness from the host language

If the host language (OCaml in our case) supports lazy evaluation, we can use it to
implement a purely functional evaluator, which is even simpler than our previous im-
plementation. Indeed, the memory references in our eval/deepen implementation are
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5. Implementing strong call-by-need

used precisely as lazy values. Thus, we can simply use the laziness provided by the host
language to avoid having to perform side effects.

The resulting interpreter is in the following form:

type value =
| Inert of nf
| Closure of env * var * term * nf Lazy.t

and env = value Lazy.t VarMap.t

let rec eval t env =
match t with
| Var x -> Lazy.force (VarMap.find x env)
| Abs (x, t) ->

Closure (env, x, t, lazy (
let y = fresh () in
let nenv = VarMap.add x (Lazy.from_val (Inert (NfVar y))) env in
NfAbs (y, deepen (eval t nenv))))

| App (t1, t2) ->
match eval t1 env with
| Closure (env1, x, body, _) ->

eval body (VarMap.add x (lazy (eval t2 env)) env1)
| Inert i -> Inert (NfApp (i, deepen (eval t2 env)))

and deepen v =
match v with
| Inert i -> i
| Closure (_, _, _, nf) -> Lazy.force nf

As we can see, this implementation is a lot simpler than the previous one! Besides, using
the host implementation of lazy values is more efficient than using our own custom-made
lazy values, as the former are more optimised (for instance, the garbage collector can
short-circuit already-computed lazy values).

5.3. Implementing extensions of the λ-calculus

As previously, we start by adding constructors and pattern matching as extensions. To
give the simplest implementation, we will extend the last one we showed, where we exploit
the laziness of the host language.

To add constructors, we need to extend the terms, normal forms, and values to handle
them.

The new definitions of terms and normal forms are straightforward:
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5.3. Implementing extensions of the λ-calculus

type term = ...
| Constr of int * term list
| Match of term * (var list * term) list

type nf = ...
| NfConstr of int * nf list
| NfMatch of nf * (var list * nf) list

Concerning the values, we need to add constructors, which are lazy, and which also lazily
compute a normal form. Thus, we add the following case to the values:

type value = ...
| Block of int * value Lazy.t list * nf Lazy.t

Finally, the only changes to eval and deepen are to support the new terms and values,
as well as failing due to a type error if we try to apply a Block. The new cases are shown
in Figure 5.1.

Once we have constructors and pattern matching, we can add fixpoints as well. As
previously, we need to extend the terms, normal forms, and values.

type term = ...
| Fix of var list * term

type nf = ...
| NfFix of var list * nf

type value = ...
| PartialFix of

var list * term * env *
value Lazy.t list * int *
nf Lazy.t * nf Lazy.t

The new value PartialFix has a lot of arguments, so it is worth explaining what they
do. The first three are the list of variables from the fixpoint, the term under the fixpoint,
and the environment in which it is evaluated. The next two arguments are respectively
the values currently applied to the fixpoint (there are always less such values than the
arity of the fixpoint), and the number of remaining arguments. Finally, the last two
values are respectively a lazy value of the normal form of the fixpoint, and a lazy value
of the normal form of the fixpoint applied to all the current arguments.

The case for a Fix (args, body) term in the eval function, as well as the extension of
the function deepen, are relatively straightforward and shown in Figure 5.2.

The real complexity lies in the new case for the application of a PartialFix value, as
shown in Figure 5.3. When applying a fixpoint, there are two cases. The first, easy case
is if there still arguments to apply, in which case we simply add the argument to the list
of currently unapplied arguments, and we extend the lazy normal form correspondingly.
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5. Implementing strong call-by-need

let extend_env env names values =
List.fold_left2 (fun env name value ->

VarMap.add name value env) env names values

let inert_var x = Lazy.from_val (Inert (NfVar x))

let force_deepen v = deepen (Lazy.force v)

let rec eval t env =
match t with
[...]
| Constr (tag, l) ->

let vl = List.map (fun t -> lazy (eval t env)) l in
Block (tag, vl, lazy (

NfConstr (tag, List.map force_deepen vl)))
| Match (t, cases) ->

match eval t env with
| Closure _ -> failwith "type error"
| Block (tag, args, _) ->

if List.length cases <= tag then
failwith "type error";

let (names, body) = List.nth cases tag in
if List.length args <> List.length names then

failwith "type error";
let env = extend_env env names args in
eval body env

| Inert i ->
let nfcases = List.map (fun (names, body) ->

let names2 = List.map (fun _ -> fresh ()) names in
let env = extend_env env names (List.map inert_var names2) in
(names2, deepen (eval body env))

) cases
in
Inert (i, nfcases)

and deepen v =
match v with
[...]
| Block (_, _, nf) -> Lazy.force nf

Figure 5.1.: Rules for constructors and pattern-matching.
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5.3. Implementing extensions of the λ-calculus

let rec eval t env =
match t with
[...]
| Fix (args, body) ->

let nf = lazy (
let nargs = List.map (fun _ -> fresh ()) args in
let nenv = extend_env env args (List.map inert_var nargs) in
NfFix (nargs, deepen (eval body nenv)))

in
PartialFix (args, body, env, [], List.length args - 1, nf, nf)

and deepen v =
match v with
[...]
| PartialFix (_, _, _, _, _, _, nf) -> Lazy.force nf

Figure 5.2.: Rule for evaluating fixpoints.

let rec eval t env =
match t with
[...]
| App (t1, t2) ->

match eval t1 env with
[...]
| PartialFix (args, body, env1, vals, i, nffix, nf) ->

if i > 1 then
(* Simple case: simply add the new argument to the list *)
let nval = lazy (eval t2 env) in
let nf = lazy (NfApp (Lazy.force nf, force_deepen nval)) in
PartialFix (args, body, env1, nval :: vals, i - 1, nffix, nf)

else
(* Complicated case: i = 1, application happens here *)
match eval t2 env with
| PartialFix _ | Closure _ -> failwith "type error"
| Inert i -> Inert (NfApp (Lazy.force nf, i))
| (Block _) as nval ->

let self = Lazy.from_val (PartialFix (args, body, env1,
[], List.length args - 1, nffix, nffix)) in

let vals = self :: List.rev (nval :: vals) in
eval body (extend_env env args vals)

Figure 5.3.: Rule for applying fixpoints
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5. Implementing strong call-by-need

The second case is more complicated, and happens when we add the final argument of
the fixpoint. In this case, the argument needs to be forced, and it must be a Block if
application is to happen. In this case, we have to reconstruct a value to be substituted
for the fixpoint inside its body as well as the arguments, and we evaluate the body in
this new environment. If the argument is inert instead, we simply return an inert term
which we obtain by applying the normal form to the argument.
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6. Coq proof

6.1. Overview

We performed a complete Coq proof that the semantics given in chapter 4 for strong
call-by-need (with constructors and pattern matching, but without fixpoints) are correct
with respect to the small-step semantics given by →βι. The semantics which is proved
correct is the first version with the two forms for values of λ-abstractions (with and
without the normal form), not the eval/deepen presentation. To prove it is correct, we
established simulations between the successive semantics presented in chapter 4: small-
step semantics, strong call-by-name, strong call-by-name with environments, and the
call-by-need semantics as a memoized version of the call-by-name semantics.

All our big-step semantics are expressed in pretty-big-step form [Cha13]. Indeed, pretty-
big-step allows for a more graceful handling of run-time errors (type errors, which would
be the appearance of a forbidden pattern) and of divergence, as well as reducing dupli-
cation efforts in the proofs. Although we have only proved preservation of divergence for
the first semantics (strong call-by-name without environments), the structure is there if
we wish to extend the proof. In our case, the pretty-big-step version of the App-I and
App-λ rules shown in section 4.1 would be decomposed as follows:

App
t1 ⇓s v App1(v, t2) ⇓f v′

t1 t2 ⇓f v′

App-I
t2 ⇓d r

App1(i, t2) ⇓f i r

App-λ
t1[x := t2] ⇓f v

App1(λx.t1, t2) ⇓f v

6.2. λ-terms and β-reduction

One crucial question before beginning the write a proof is to choose how binders are
represented. The two main possibilities are de Bruijn indices and named variables, al-
though a lot of other solutions are possible too, such as the locally nameless approach.
In our case, we chose to use de Bruijn indices for the terms, because this allows us to
avoid having to care about fresh variables, especially in substitutions. However, we used
named variables for normal forms, because de Bruijn indices do not work with sharing
(or need explicit renaming nodes, once again breaking the uniqueness of representations),
and we want to be able to exploit sharing in our results.

The definition of terms is as follows:
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6. Coq proof

Inductive term :=
| var : nat -> term
| dvar : nat -> term
| abs : term -> term
| app : term -> term -> term
| constr : nat -> list term -> term
| switch : term -> list (nat * term) -> term.

Here, the constructor var is for variables with de Bruijn indices, while dvar is reserved
for future defined variables. The constructors abs and app handle abstractions and
application, respectively, while constr is a data constructor (using integers as tags), and
switch is for pattern matching, where each tag corresponds to the corresponding position
in the list, and the integer is the number of bound variables (no names are necessary,
since we are using de Bruijn indices).

Since the induction principle generated by Coq is not powerful enough for the list term
nested subterms, we have to generate it by hand using a Fixpoint definition. The
definition is simply a recursive function over the term:

Fixpoint term_ind2 (P : term -> Prop)
(Hvar : forall n, P (var n))
(Hdvar : forall n, P (dvar n))
(Habs : forall t, P t -> P (abs t))
(Happ : forall t1 t2, P t1 -> P t2 -> P (app t1 t2))
(Hconstr : forall tag l, Forall P l -> P (constr tag l))
(Hswitch : forall t m, P t ->

Forall (fun '(p, t2) => P t2) m -> P (switch t m))
(t : term) : P t :=

match t with
| var n => Hvar n
| abs t =>

Habs t (term_ind2 P Hvar Hdvar Habs Happ Hconstr Hswitch t)
| constr tag l =>

Hconstr tag l
((fix H (l : _) : Forall P l :=

match l with
| nil => @Forall_nil _ _
| cons t l =>

@Forall_cons _ _ t l
(term_ind2 P Hvar Hdvar Habs Happ Hconstr Hswitch t)
(H l)

end) l)
[...]
end.
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With this definition, we can define renamings and substitution. Renamings are increasing
functions from integers to integers (with a few more conditions), that are used to change
the values of de Bruijn indices in a term when we substitute terms under binders. With
this, we can first define renaming the variables inside a given term, and then parallel
substitution inside a term.

Fixpoint ren_term (r : renaming) t :=
match t with
| var n => var (renv r n)
| abs t => abs (ren_term (lift r) t)
| constr tag l => constr tag (map (ren_term r) l)
[...]
end.

Definition lift_subst us :=
scons (var 0) (comp (ren_term (plus_ren 1)) us).

Definition liftn_subst p us n :=
if p <=? n then ren_term (plus_ren p) (us (n - p)) else var n.

Fixpoint subst us t :=
match t with
| var n => us n
| dvar n => dvar n
| abs t => abs (subst (lift_subst us) t)
| app t1 t2 => app (subst us t1) (subst us t2)
| constr tag l => constr tag (map (subst us) l)
| switch t l =>

switch (subst us t) (map (fun pt2 =>
(fst pt2, subst (liftn_subst (fst pt2) us) (snd pt2))) l)

end.

We can see that both functions are very similar, with the main difference being in the
variable case, where in the first case the renaming only returns the new index of the
variable, where in the second case it returns a complete term. Unfortunately, we cannot
simply implement ren_term in terms of subst, since lifting the substitutions in the
recursive calls of subst necessitates to be able to rename terms! However, we have an
equality theorem relating the two:

Definition ren r := fun n => var (renv r n).

Lemma ren_term_is_subst :
forall t r, ren_term r t = subst (ren r) t.

The definition of terms and substitution allows us to finally define β-reduction.1 As it

1Actually, what we call β-reduction in the code is βι-reduction.
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is non-deterministic (we do not restrict ourselves to any fixed reduction strategy), it is
defined as as inductive predicate relating two terms.

Inductive beta : term -> term -> Prop :=
| beta_app1 : forall t1 t2 t3, beta t1 t2 -> beta (app t1 t3) (app t2 t3)
| beta_app2 : forall t1 t2 t3, beta t1 t2 -> beta (app t3 t1) (app t3 t2)
| beta_abs : forall t1 t2, beta t1 t2 -> beta (abs t1) (abs t2)
| beta_redex : forall t1 t2, beta (app (abs t1) t2) (subst1 t2 t1)
| beta_constr : forall tag t1 t2 l1 l2, beta t1 t2 ->

beta (constr tag (l1 ++ t1 :: l2)) (constr tag (l1 ++ t2 :: l2))
| beta_switch1 : forall t1 t2 l, beta t1 t2 ->

beta (switch t1 l) (switch t2 l)
| beta_switch2 : forall t p t1 t2 l1 l2, beta t1 t2 ->

beta (switch t (l1 ++ (p, t1) :: l2)) (switch t (l1 ++ (p, t2) :: l2))
| beta_switch_redex : forall l t l1 l2,

beta (switch (constr (length l1) l) (l1 ++ (length l, t) :: l2))
(subst (read_env l) t).

6.3. The call-by-name, big-step semantics

With the definition of beta done, we can move to defining the different semantics which
we will prove equivalent to it. However, we first need to define the type of normal forms:

Inductive nfval :=
| nvar : nat -> nfval
| napp : nfval -> nfval_or_lam -> nfval
| nswitch : nfval -> list (nat * nfval_or_lam) -> nfval

with nfval_or_lam :=
| nval : nfval -> nfval_or_lam
| nlam : nfval_or_lam -> nfval_or_lam
| nconstr : nat -> list nfval_or_lam -> nfval_or_lam.

Here, binders are still in de Bruijn notation, as it is easier that way. However, we will
soon switch binders to support sharing.

First, we define our substitution-based call-by-name big-step semantics, which will be
presented in pretty-big-step [Cha13] format to simplify some parts of the proofs, for
instance by allowing us to share parts of the proof between the different rules for function
application. We first need to define a type for the results of evaluation: either a result, or
something indicating divergence, to which we could add as future work a result indicating
a runtime error.
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Inductive out t :=
| out_ret : t -> out t
| out_div : out t.

We can then define a type of values for the results of computations, and of extended
terms: either a normal term to be reduced, or an intermediate step in a reduction rule,
like ext_app for the intermediate step when evaluating an application where the function
has been reduced, but neither the argument nor the β-redex. Both of them come in two
flavours, for shallow or deep evaluation.

Inductive deep_flag := shallow | deep.

Inductive val : deep_flag -> Type :=
| vals_nf : nfval -> val shallow
| vals_abs : term -> val shallow
| vald_nf : nfval_or_lam -> val deep
[...].

Inductive ext : deep_flag -> Type :=
| ext_term : forall df, term -> ext df
| ext_app : forall df, out (val shallow) -> term -> ext df
| ext_appnf : forall df, nfval -> out (val deep) -> ext df
| extd_abs : out (val deep) -> ext deep
[...].

Next, to propagate divergent (or error) states, we define the functions get_out_abort
and get_abort, which lift any out_div out of an extended term:

Definition get_out_abort {t1 t2} (o : out t1) : option (out t2) :=
match o with
| out_div => Some out_div
| _ => None
end.

Definition get_abort {df t} (e : ext df) : option (out t) :=
match e with
| ext_term _ => None
| ext_app o _ => get_out_abort o
| ext_appnf _ o => get_out_abort o
[...]
end.

The core of the definition of the semantics is then a large (≈ 60 lines) inductive definition
with open recursion. We show the cases concerning the core λ-calculus below:

Inductive red_ (rec : forall df, ext df -> out (val df) -> Prop) :
forall df, ext df -> out (val df) -> Prop :=
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| red_var : forall df n,
red_ rec df (ext_term (var n)) (out_ret (val_nf (nvar n)))

| red_abs_shallow : forall t,
red_ rec shallow (ext_term (abs t)) (out_ret (vals_abs t))

| red_abs_deep : forall t o1 o2,
rec deep (ext_term t) o1 ->
rec deep (extd_abs o1) o2 ->
red_ rec deep (ext_term (abs t)) o2

| red_abs1 : forall v,
red_ rec deep

(extd_abs (out_ret (vald_nf v)))
(out_ret (vald_nf (nlam v)))

| red_app : forall df t1 o1 t2 o2,
rec shallow (ext_term t1) o1 ->
rec df (ext_app o1 t2) o2 ->
red_ rec df (ext_term (app t1 t2)) o2

| red_app1_nf : forall df v o1 t2 o2,
rec deep (ext_term t2) o1 ->
rec df (ext_appnf v o1) o2 ->
red_ rec df (ext_app (out_ret (vals_nf v)) t2) o2

| red_app1_abs : forall df t1 t2 o,
rec df (ext_term (subst1 t2 t1)) o ->
red_ rec df (ext_app (out_ret (vals_abs t1)) t2) o

| red_appnf : forall df v1 v2,
red_ rec df

(ext_appnf v1 (out_ret (vald_nf v2)))
(out_ret (val_nf (napp v1 v2))

[...]
| red_abort : forall df e o,

get_abort e = Some o -> red_ rec df e o.

The open recursion is closed afterwards, giving both inductive and coinductive definitions,
so that it is possible to reason about termination: red df e o expresses that e terminates
and reduces to o, while cored df e o expresses that e either diverges or reduces to o;
in particular, cored df e out_div expresses that e diverges.

Inductive red : forall df, ext df -> out (val df) -> Prop :=
| mkred : forall df e o, red_ red df e o -> red df e o.

CoInductive cored : forall df, ext df -> out (val df) -> Prop :=
| mkcored : forall df e o, red_ cored df e o -> cored df e o.

Moreover, this scheme of defining the semantics via open recursion which we close at the
end has a second advantage. Indeed, we implemented a small library which allows us
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to generate stronger induction principles for such datatypes, thus further simplifying the
proofs.

With these definitions in hand, we write readback functions and prove our first semantics
preservation theorem:

Fixpoint read_nfval v :=
match v with
| nvar n => var n
| napp v1 v2 => app (read_nfval v1) (read_nfval_or_lam v2)
| nswitch v l =>

switch (read_nfval v)
(map (fun pt2 => (fst pt2, read_nfval_or_lam (snd pt2))) l)

end

with read_nfval_or_lam v :=
match v with
| nval v => read_nfval v
| nlam v => abs (read_nfval_or_lam v)
| nconstr tag l => constr tag (map read_nfval_or_lam l)
end.

[...]

Lemma red_star_beta :
forall df e o, red df e o ->

forall t1 t2,
read_ext e = Some t1 ->
read_out o = Some t2 ->
star beta t1 t2.

This theorem states that if we start with a state e and get a result o, both of which can
be read back to λ-terms, then we have a sequence of reductions from the first term to the
second. Note that this is a forall t1 t2 and not forall t1, exists t2, as we might
not get a result, in case of divergence or run-time errors. We however prove a second
theorem, which entails that we do not introduce divergence in a strongly-normalising
λ-term:

Lemma red_div_beta :
forall t df e o, cored df e o ->

read_ext e = Some t ->
costar beta t (read_out o).

Taking o = out_div, we obtain that cored df e out_div implies divergence of t.

However, due to the inherent difficulties of working with coinductive types in Coq, we
only proved this theorem of preservation of termination for this semantics, and not the
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following ones.2 Moreover, we did not formalise the notion of forbidden subpatterns at
all, so we have no proof of the absence of run-time errors.

6.4. Environment semantics

The next step is the semantics using environments, which we call redE in the code. The
status of this semantics is a bit peculiar: as it is a form of intermediate semantics, there
are some parts of it which are solely to simplify the proofs.

The definition of the semantics starts with a definition of the values inside the envi-
ronment: either a variable name, or a term (with de Bruijn indices), together with its
environment, itself a list of values. In the second case, we also keep a list of variable
names which is a superset of the list of free variables of the term and its environment.
This list of variables has no impact on the semantics, and is only there to help with the
proof.

Inductive clo :=
| clo_var : freevar -> clo
| clo_term : list freevar -> term -> list clo -> clo.

We also define a type of normal forms with named variables:

Inductive nfvalx :=
| nxvar : freevar -> nfvalx
| nxapp : nfvalx -> nfvalx_or_lam -> nfvalx
| nxswitch : nfvalx -> list (list freevar * nfvalx_or_lam) -> nfvalx

with nfvalx_or_lam :=
| nxval : nfvalx -> nfvalx_or_lam
| nxlam : freevar -> nfvalx_or_lam -> nfvalx_or_lam
| nxconstr : nat -> list nfvalx_or_lam -> nfvalx_or_lam.

We then define valE and extE as previously, before defining redE. It is again defined
using open recursion, and takes an additional input which is the environment. It also
takes three(!) additional lists of variables as inputs, named xs, fvs and dom.

• xs is a list of variables which must not be used for new variable names,

• dom is a list of variables containing xs, which must contain all new variable names,

• fvs is a list of variables such that, if the free variables of the input are contained
in fvs, so are the free variables of the output.

The interesting property of fvs is that it is only there to help with the proof, as shown
by the following theorem:

2Some tools such as the paco library [Hur+13] might have helped; however, since we are mainly
interested in proving correctness and not completeness, we did not pursue this further.
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Lemma redE_fvs_any :
forall df xs dom fvs e o, redE df xs dom fvs e o ->

forall fvs2, redE df xs dom fvs2 e o.

The definition of redE itself is similar to the definition of red. However, there are a few
interesting points concerning the handling of the list of free variables in clo_term:

Inductive redE_
(rec : forall df, list freevar -> list freevar -> list freevar ->

extE df -> out (valE df) -> Prop) :
forall df, list freevar -> list freevar -> list freevar ->

extE df -> out (valE df) -> Prop :=
| redE_clo_term : forall df xs xs2 dom fvs t env o,

xs2 ⊆ dom ->
rec df xs2 dom (list_inter xs2 fvs) (extE_term env t) o ->
redE_ rec df xs dom fvs (extE_clo (clo_term xs2 t env)) o

| redE_app1_abs : forall df xs xs2 dom fvs env env2 t1 t2 o,
xs ⊆ xs2 -> xs2 ⊆ dom ->
rec df xs dom fvs (extE_term

(match env_get_maybe_var env t2 with
| Some c => c | _ => clo_term xs2 t2 env
end :: env2) t1) o ->

redE_ rec df xs dom fvs
(extE_app env (out_ret (valEs_abs t1 env2)) t2) o

[...]

Here, in the definition of redE_app1_abs, the function call env_get_maybe_var env t2
looks at whether t2 is a variable, in which case it will return Some c, with c the value
of that variable in the environment, otherwise it returns None. Note that a version of
env_get_maybe_var which would always return None would be correct at well: it is
only a small optimisation, which avoids creating a clo_term value that would only get
evaluated to the value of this variable when we already know the result. Since it adds
almost nothing to the proof effort, we included this optimisation here.

Here we can see that when adding a clo_term value to the environment, we use any list
of variables between xs and dom. We could have used only xs instead, but this allows us
to have monotonicity of our definition for both xs and dom.

Moreover, when evaluating a clo_term value, we reset the value of xs back to xs2 which
was held inside the clo_term! Indeed, since the free variables of the term are a subset of
xs2 (since they were at creation), there is no risk of accidental capture when using the
result somewhere else in redE_clo_term. This is critical, since this is what allows us to
memoize the evaluation in different contexts, which might not have the same xs, since
they could be used under different numbers of binders.

As hinted above, redE is monotonic in both xs and dom, although in different directions,
as shown by the following two theorems:
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Lemma redE_xs_mono :
forall df xs dom fvs e o, redE df xs dom fvs e o ->

forall xs2, xs2 ⊆ xs -> redE df xs2 dom fvs e o.

Lemma redE_dom_mono :
forall df xs dom fvs e o, redE df xs dom fvs e o ->

forall dom2, dom ⊆ dom2 -> redE df xs dom2 fvs e o.

The third list of variables, fvs, is only there for the proof of the semantics preservation
theorem. Unfortunately, it is not possible to remove it from the definition, and write a
function that would yield fvs from the input, since it would lead to an universe inconsis-
tency, due to fvs inhabiting in Type, while the semantics itself is an inductive Prop. It
would be possible to change the semantics to reside in Type, but that would contaminate
all other semantics of the proof, which would need to be in Type to avoid other universe
inconsistencies.

With redE defined, we can prove it is correct with respect to red. First, we define a
readback function from closures to terms, and a readback function from normal forms to
terms.

Fixpoint read_clo (xs : list freevar) (c : clo) : term :=
match c with
| clo_var x => var (index xs x)
| clo_term _ t l =>

let nl := map (read_clo xs) l in
subst (read_env nl) t

end.

Fixpoint read_nfvalx xs v :=
match v with
| nxvar x => nvar (index xs x)
| nxapp v1 v2 => napp (read_nfvalx xs v1) (read_nfvalx_or_lam xs v2)
| nxswitch t m => [...]
end

with read_nfvalx_or_lam xs v :=
match v with
| nxval v => nval (read_nfvalx xs v)
| nxlam x v => nlam (read_nfvalx_or_lam (x :: xs) v)
| nxconstr tag l => [...]
end.

We can then use these to read valE and extE, using read_clo on the inputs and
read_nfvalx for the outputs, mapping each extE constructor to its equivalent ext con-
structor and reading each of the arguments back to terms. Finally, with the help of some
simple helper lemmas, we can prove the semantics preservation theorem:
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Lemma redE_red :
forall df xs dom fvs e o,

redE df xs dom fvs e o ->
fvs ⊆ xs /\ extE_closed_at e fvs ->
forall fvs2,

fvs ⊆ fvs2 ->
red df (read_extE fvs2 e) (out_map (read_valE fvs2) o).

Here we can see the hypothesis fvs ⊆ xs /\ extE_closed_at e fvs, which uses fvs
as we said earlier. It expresses the fact that the free variables of e are a subset of fvs,
which themselves are a subset of xs. This property, being true at toplevel, is true for
all recursive calls to the inductive predicate in the definition of redE. This theorem is
proved independently, and our library for stronger induction principles allow us to derive
an induction principle here where we don’t have to prove again that this property is
preserved. We thus get the result that if we have a reduction by redE from e to o, we
have a reduction from their readbacks by red (and thus by star beta, using the other
preservation theorem that we proved).

6.5. Transfer lemmas and memoized semantics

Before giving the definition of redM, the memoized semantics, we first prove the transfer
lemmas we showed in section 4.2. Once again, we need to take care of free variables,
such as the domain. For instance, in the case of λ-abstractions, we have the following
dual lemmas:

Lemma redE_deep_shallow_abs :
forall xs dom fvs e t env v,

redE deep xs dom fvs e (out_ret (valEd_abs t env v)) ->
forall e2,

extE_deep_to_shallow e = Some e2 ->
redE shallow xs dom fvs e2 (out_ret (valEs_abs t env)).

Lemma redE_shallow_deep_abs :
forall xs dom fvs e t env,

redE shallow xs dom fvs e (out_ret (valEs_abs t env)) ->
forall o dom2, xs ⊆ dom -> dom ⊆ dom2 ->

redE deep dom dom2 fvs (extE_term env (abs t)) o ->
redE deep xs dom2 fvs (extE_shallow_to_deep e) o.

As we can see, in the second lemma, we require that the second reduction happens with
a set of forbidden variables equal to all variables that could have been defined in the first
reduction. That way, there is no risk of collision between both sets of variables.

Once we have those transfer lemmas, we can move on to the definition of the memoized
semantics redM.
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To define them, we need to introduce a memory, which stores the results of the evaluation
of each term of type clo in the previous semantics. Thus, whereas we had a value of type
clo, we now have a memory reference (freevar), and the memory contains results of
the evaluation of such memory references, or the eiM_lazy constructor to indicate that
it has not yet been evaluated.

Inductive eiM :=
| eiM_lazy : term -> list freevar -> eiM
| eiM_abs1 : term -> list freevar -> eiM
| eiM_abs2 : term -> list freevar -> nfvalx_or_lam -> eiM
| eiM_constr1 : nat -> list freevar -> eiM
| eiM_constr2 : nat -> list freevar -> nfvalx_or_lam -> eiM
| eiM_val : nfvalx -> eiM.
Definition memM := list (freevar * eiM).

The previous clo_term is now replaced by eiM_lazy, which has not been evaluated
yet (but which can have references to terms that have been evaluated). Where we had
clo_var x previously, we now have eiM_val (nxvar x), where the increased generality
is used to store results of terms. All the other cases represent results of evaluation, with
two versions, one for shallow and one for deep evaluation. Thanks to the transfer lemmas,
we can extract the shallow version from the deep version, and the deep version from the
shallow version after some more computation.

At this point we can define valM and extM with definitions close to valE and extE,
replacing the type clo by memory references freevar. Then, we can define a predicate
update_result which takes the result of a computation and will update it inside the
memory at a given location (with eiM_abs1, eiM_constr1 and eiM_val used if it was a
shallow evaluation, and eiM_abs2, eiM_constr2 and eiM_val if it was deep). Finally,
we can define redM like for redE, with new rules instead of redE_clo_term:

Inductive redM_ (rec : forall df, extM df -> outM (valM df) memxM -> Prop) :
forall df, extM df -> outM (valM df) memxM -> Prop :=

| redM_clo_abs1_shallow : forall m x t env,
env_find (fst m) x = Some (eiM_abs1 t env) ->
redM_ rec shallow (extM_clo m x) (outM_ret (valMs_abs t env) m)

| redM_clo_abs1_deep : forall m x t env o1 o2,
env_find (fst m) x = Some (eiM_abs1 t env) ->
rec deep (extM_term env m (abs t)) o1 ->
update_result deep x o1 o2 ->
redM_ rec deep (extM_clo m x) o2

| redM_clo_abs2_shallow : forall m x t env body,
env_find (fst m) x = Some (eiM_abs2 t env body) ->
redM_ rec shallow (extM_clo m x) (outM_ret (valMs_abs t env) m)

| redM_clo_abs2_deep : forall m x t env body,
env_find (fst m) x = Some (eiM_abs2 t env body) ->
redM_ rec deep (extM_clo m x) (outM_ret (valMd_abs t env body) m)
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| redM_clo_lazy : forall df m x t env o1 o2,
env_find (fst m) x = Some (eiM_lazy t env) ->
rec df (extM_term env m t) o1 ->
update_result df x o1 o2 ->
redM_ rec df (extM_clo m x) o2

[...]
.

Here, we can see that redM_clo_lazy simply evaluates a lazy term, then stores it result
before returning. On the other hand, we can see four versions of redM_clo_abs, for both
shallow or deep evaluation, depending on whether a shallow or deep version was stored.
If the version stored is the same as evaluation, we can simply return the version that
was stored, but if not, we can use the transfer lemmas to either extract or compute the
version we need, possibly updating the stored version from shallow to deep.

The correctness of this is quite complex to prove. Indeed, we need a readback relation
res between a clo and a memory element eiM, given the state of the memory. As what
can be stored in the memory can be an evaluated version of the clo_term, we need to
specify that it is indeed the expected result, and thus we need to call redE there.3 This
really is the core of the proof, that the results that have been memoized are indeed the
correct results.

Thus, the definition of read_eiM is as follows:

Inductive read_eiM res dom : eiM -> clo -> Prop :=
| read_eiM_lazy : forall t ys vs xs,

map Some vs = map res ys ->
read_eiM res dom (eiM_lazy t ys) (clo_term xs t vs)

| read_eiM_abs1 : forall t ys u ws vs xs fvs,
map Some vs = map res ys ->
redE shallow xs dom fvs (extE_term ws u) (out_ret (valEs_abs t vs)) ->
read_eiM res dom (eiM_abs1 t ys) (clo_term xs u ws)

| read_eiM_abs2 : forall t ys u ws v vs xs fvs,
map Some vs = map res ys ->
redE deep xs dom fvs (extE_term ws u) (out_ret (valEd_abs t vs v)) ->
read_eiM res dom (eiM_abs2 t ys v) (clo_term xs u ws)

[...]
| read_eiM_var : forall y,

read_eiM res dom (eiM_val (nxvar y)) (clo_var y).

3This is better than redM because it is pure and does not depend on the state of the memory. If we
used redM, it would be unclear which memory state we would need, as we could use the current state,
or the state when the lazy value was reduced, or again the state when it was produced. Whatever
the state chosen, we would need to prove that other choices work as well. With the pure redE, we
do not have this problem at all.
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We can see the readback is no longer a function from one kind of values to those of the
previous semantics, but instead a relation, making it less practical to work with, but able
to express more powerful invariants concerning the memory. res then acts like an oracle
giving what the contents of the memory should correspond to, and the various theorems
will then assume the memory is compatible with this expected result.

Now that we have a way to read the memory, we can write the specifications for reading
extM and valM states. These simply make a correspondence with the matching extE or
valE constructor, using res as the oracle to read the memory references to produce the
corresponding closures, and ensuring the memory state is consistent with the expected
readback res.

Once this is done, we define a notion of compatibility between two readbacks of states of
the memory res1 and res2, specifying that res2 is defined on more memory addresses
than res1, and on those in common, both are read the same way; i.e. the memory was
extended between res1 and res2. We can then prove that the readback of eiM or valM
are unaffected in this extended memory, establishing we only need to prove that the new
addresses that were defined in the memory were read correctly. Besides, we also establish
that updating a memory location to something else that has the same readback is correct,
which is used when we update a lazy value to its computed version.

Finally, we can prove our preservation theorem from redM to redE:

Lemma redM_redE :
forall df e o,

redM df e o ->
forall m res e2,

get_ext_memxM e = Some m ->
read_extM df res e e2 ->
exists m2 o2 res2,

get_out_memxM o = Some m2 /\
redE df (snd m) (snd m2) nil e2 o2 /\
read_outM df res2 o o2 /\
compat_res res res2.

It says that if there is a reduction from e to o, e contains a memory state m (i.e. it is
neither an error nor divergence) and that we can read e as e2 with some corresponding
readback of memory res, then the result o contains some memory m2, which is read in a
compatible readback res2 to o2, and that there is a reduction redE from e2 to o2, which
is the preservation theorem we wanted.

Thus, each of these semantics was proved correct with respect to the previous semantics,
establishing that our strong call-by-need semantics is indeed correct with respect to
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the small-step semantics of the λ-calculus.4 As said before, we have not proved the
preservation of normalisation, as the handling of coinduction in Coq is complex.

In a previous attempt, we had a full proof for a small-step strong call-by-need seman-
tics, but only for the pure λ-calculus, without constructors. As the proof was already
very large (more than 10000 lines of Coq) and relied on extremely complex invariants
(specifying two terms were equal when a variable was substituted in some places and not
substituted in other places, keeping a well-founded order on variables, etc.), it was too
difficult to scale to a proof for the extended λ-calculus and we wrote a proof for big-step
semantics instead.

6.6. Extending induction principles with invariant properties

The types shown above for reduction relations are very large, and often require proving
that some invariants hold when doing an inductive proof. In particular, a common
pattern is to prove inductively:

Lemma example : forall (a : T), P a -> Q a.

In this case, we need to prove P b for each b which is a “subterm” of a. Such a proof
can be done independently, and then we can have a stronger induction principle for
instantiations of the above for various values of Q, without repeating the tedious step of
proving P b in each case.

However, it is quite tricky to define what a subterm is, especially when the definitions
come from an already large term. Thankfully, open recursion and higher-order definitions
can help us a lot to avoid writing two very similar definitions and keeping them in sync.

Thus, suppose we have an inductive proposition P of one argument, defined by the open
recursion G:

Context (G : (A -> Prop) -> (A -> Prop)).
Inductive P : A -> Prop := mkP : forall (x : A), G P x -> P x.

First, to abstract this into a library, we need to be able to specify what the inductive
definition means without using an inductive definition. In our case, we need three things:

• We have the equivalent of the constructor : forall x, G P x -> P x.

• The induction hypothesis holds:
forall Q, (forall x, G Q x -> Q x) -> forall x, P x -> Q x.

When defining a new inductive type in Coq, Coq automatically derives such an
induction theorem for us.

4Technically speaking, we would need to write a readback relation from the redM terms to term to prove
that, and compose all the theorems together. We have not done this, as at the point the proof was
finished, we focused on the more interesting convertibility problem instead.
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• The definition is positive:
forall Q R, (forall x, Q x1 -> R x1) -> forall x, G Q x -> G R x.

Positivity is required to prove that if we can prove some property on our terms, we
can prove a stronger one. It is also necessary to define new inductive types in Coq,
so this property will always hold for inductively defined types.

These three conditions are a bit more general than inductive types: for instance, Coq
inductive types require strict positivity as well, meaning no subterms can happen to
the left of an arrow, even in covariant positions. However, we can prove the induction
principles that interest us without it.

The stronger induction principles we want to prove have an invariant, which is a property
Q, such that if Q is true on a term x, then it is true on all subterms of x. The naïve version
would be to define it in the following way:

Definition preserved_down Q :=
forall x, G P x -> Q x -> G (fun x => P x /\ Q x) x.

However, if there are several constructors for G, then there might be a proof of
G (fun x => P x /\ Q x) x, but which did not correspond to the initial proof of
G P x we had. Thus, we specify a stronger requirement for preserved_down, where the
presence of R will ensure we have the same proof:

Definition preserved_down Q :=
forall R x, G (fun x => P x /\ R x) x -> Q x ->

G (fun x => P x /\ Q x /\ R x) x.

We can also specify what it means that a property Q is inductive, assuming we have
invariant R. It simply means that we can assume that R is true on x and all its subterms,
and we need to prove Q from it.

Definition preserved_with_inv Q R :=
forall x, G (fun x => P x /\ Q x /\ R x) x -> R x -> Q x.

From this, we can prove the induction-with-invariants theorem:

Lemma preserved_with_inv_rec :
forall Q R, preserved_down R -> preserved_with_inv Q R ->

forall x, P x -> R x -> Q x.

The advantage of this induction theorem is that we can prove preserved_down R once,
and then instantiate the theorem with various values for Q!

In practice, we use a small OCaml program to generate a version of this for each number
of arguments, as it would be quite complicated to write the above in a way that is
parametric in the number of arguments. We also write a tactic to prove that a inductive
type satisfies our definitions, to avoid proving them by hand each time.
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7.1. Methodology

For experimental evaluation, we relied on our OCaml implementation of the strong call-
by-need evaluator, which includes the handling of fixpoints additionally to what has been
verified in Coq. Variables in the input terms were represented by the type string, which
comes with additional cost compared to Coq’s internal de Bruijn indices. On the Coq
side, we instrumented Coq’s convertibility checker so that it prints the time taken (this
is much more precise than just relying on Coq’s Time command, which also accounts for
other aspects such as typechecking). We used Coq 8.15.2, extended with these changes to
the reduction engine. Moreover, both Coq and our implementation were compiled using
OCaml 4.12.1, and the experiments were made on a laptop with an 11th Gen Intel(R)
Core(TM) i7-1165G7 @ 2.80GHz CPU and 2x 16GiB SODIMM DDR4 Synchronous 3200
MHz (0.3 ns) RAM, running Linux 5.15.74 with NixOS 22.05.

7.2. Testcases

We measured time taken by both Coq and our implementation to compute the normal
forms of various λ-terms, especially with computations in Peano or Church arithmetic.

The testcases used are the same as in the benchmarks used by Grégoire and Leroy [GL02],
corresponding to computing the normal forms of different computations on integers, both
using Peano and Church integers. The first three tests with Peano integers only use weak
reduction, but all other tests need strong reduction to compute the normal form. The
results are summarised in Figure 7.1.

Testcase (Peano) Coq Ours
test1p 0.40s 1.84s
test2p 1.08s 0.74s
test3p 28ms 44ms
test4p 15ms 13ms

Testcase (Church) Coq Ours
test1c 1.18s 2.09s
test2c 1.11s 0.98s
test3c 1.7ms 0.3ms
test4c 2.5ms 0.4ms

Figure 7.1.: Timings, in seconds, for the computation of normal forms of different
terms. Left column uses Peano integers, right column uses Church integers. The
tests correspond to, in this order, factorial 9, is_even (factorial 9), 256 * 64
and (fun x y => (128 + x) * (128 + y)).
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Concerning Church integers, since our evaluator is untyped while Coq is typed, we chose
to use Church integers specialised to a given type as well as definitions of the operations
used (in particular, factorial) so that there are no type abstractions or evaluations during
the reduction to keep the comparison as fair as possible.

We see here that the time taken by Coq and by our evaluator is on the same order of
magnitude. Since our evaluator relies on a formally verified evaluation semantics, this is
a victory: we were able to formally verify an evaluation strategy that behaves close to
the one used by Coq.

In the next part of this thesis, we will focus on our original problem, a convertibility test.
We will see there that, by using a more complex strategy, we are able to significantly
outperform Coq in some cases.
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8.1. Related work

8.1.1. A compiled implementation of strong reduction

In [GL02], Grégoire and Leroy present a virtual machine (which we will here call the
OpenZAM), which is a modified version of the ZAM used in OCaml’s implementation,
allowing to perform open call-by-value reduction. With a procedure consisting in open
head reduction followed by iterative reduction under the λ-abstractions that appear in
the normal form, they obtain a machine for strong call-by-value reduction. While this
machine is efficient with minimal changes to the readback procedure to preserve sharing,
and is indeed used by Coq’s vm_compute strategy, it is still call-by-value reduction, and
will sometimes reduce subterms that are never needed, potentially even resulting in non-
termination. However, it also has the merit of being a compiled implementation. As we
ensured our own semantics respected the subterm property, we could actually mimic the
OpenZAM to obtain efficient compilation of λ-terms if we so wished.

8.1.2. Crégut’s KN and KNL machines

In [Cré07], Crégut presents two abstract machines, KN and KNL, which are variations
on the KAM for strong call-by-need reduction. While the KN machine satisfies the
subterm property, it is unable to share the computation of normal forms of the same
λ-abstraction in different contexts, leading to exponential complexity in some cases.
On the other hand, KNL tries to share reductions, but loses the subterm property by
reducing under λ-abstractions before they are applied, and having a potentially quadratic
slowdown in the worst case, as it can end up reducing a normal form that has already
been computed to normal form repeatedly. Besides, normal forms are expressed using de
Bruijn levels; as we mentioned in section 2.1, this makes it impossible to use some kinds
of sharing, causing normal forms to grow larger.

8.1.3. Full laziness

In [Bal12], Balabonski studies full laziness, a stronger form of call-by-need. With full
laziness, subexpressions inside a λ-abstraction which do not depend of the value of the
variable being abstracted on are shared among all the applications of the λ-abstraction,
and thus only evaluated once instead of each time the λ-abstraction is applied to an
argument. For instance, consider the λ-abstraction λx.x + exp2 30. Here, exp2 30 is
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expensive to compute but does not depend on x, and we would like to compute it only
once, and not each time our λ-abtraction is applied. On the other hand, we would like
it not to be evaluated if we are never going to apply our λ-abstraction, to avoid paying
the cost of something we are never going to use.

There have been many previous definition of full laziness in the literature (for instance
in [Jon87]); Balabonski shows they are all equivalent in the sense that they all perform
the same β-reductions. While the semantics we gave do not have the property of full
laziness, one standard way to obtain it is to apply a transformation called λ-lifting to
the input program, so that the resulting program will behave under our semantics as
the original program, except that subexpressions not depending on the argument of the
λ-abstraction are shared. The idea behind λ-lifting is simply to enforce sharing of all
these subexpressions by replacing them with variables that are let-bound outside the
λ-abstraction.

More precisely, if t is of the form λx.C[u], where u does not depend on x, then we replace
it with (λy.λx.C[y]) u, which has the same semantics as t since it directly reduces to t.
However, when we reduce the outermost redex, we create a lazy binding for u, causing it
to be computed once the first time me apply the inner λ-abstraction, and the result of
the computation to be reused each time we apply it again. For instance, in the previous
example, we would get (λy.λx.x + y) (exp2 30), and the computation of exp2 30 will
only happen at most once while reducing.

More generally, we identify under every λ-abstraction every subterm which is not a
variable and does not depend on the parameter of the λ-abstraction, and we replace each
of them by a variable, which we bind to its definition outside all λ-abstractions with a
parameter that does not appear inside the definition.

With this transformation, both weak and strong normalisation are preserved, as the new
redexes we introduce have a very specific form: no redex is created at runtime that did
not exist in the original term. Thus, termination is preserved with call-by-name and call-
by-need, as both these strategies terminate if and only if the term is weakly normalising.
However, termination is not guaranteed when using specific evaluation strategies. Indeed,
with call-by-value, lifting a term that does not terminate outside a function that is never
applied will cause this term to be evaluated before the application of the function to
an argument, causing non-termination, while the original program never applied this
function and was thus able to terminate. This can for instance be seen on the following
term: (λx.w) (λy.Ω), where Ω does not terminate.

8.1.4. Automatically converting small-step semantics to big-step
semantics

In [Cio13], Ciobâcă examines a transformation that can be used to convert small-step
semantics to big-step semantics. The transformation proposed there could probably be
used to produce our big-step call-by-name semantics, by adapting it to our formalisation

76



8.1. Related work

with contexts instead of an inductively-defined reduction relation, and adapting it to
the fact that we have two different evaluation contexts and thus two big-step reduction
relations to consider. In any case, our big-step semantics are simple enough that we
obtained them quite naturally by hand, before noticing while writing this thesis that there
was a simple, almost-mechanical process to extract them from the small-step semantics.

8.1.5. Balabonski, Barenbaum, Bonelli, and Kesner’s λc calculus

In [Bal+17], Balabonski, Barenbaum, Bonelli, and Kesner present a strong call-by-need
calculus λc. This calculus is an explicit substitution calculus, and designed to be an
extension of weak call-by-need calculi, by never reducing inside a λ-abstraction that will
later be applied. As such, it is similar to our own semantics, although our semantics
keep sharing only implicitly in the output (with the sharing of pointers in the represen-
tation), while they keep sharing explicit even in the results. Another difference is that
since they do not keep the two versions of λ-abstractions like we do, they must disallow
reducing under λ-abstractions until after all their uses have been seen, which is complex
to implement without at least re-traversing the terms. While we only prove correction of
our calculus, they also prove completeness and conservativity over the weak call-by-need
calculus. However, they do not provide an abstract machine, nor a formal proof of cor-
rectness. Still, we expect our semantics to be similar to theirs, using exactly the same
number of β-reductions to reach a normal form.

8.1.6. Balabonski, Lanco, and Melquiond’s strong call-by-need calculus

In [BLM21], Balabonski, Lanco, and Melquiond present a strong call-by-need calculus,
and an abstract machine for it. This calculus is an extension of λc, which allows reduction
under λ-abstractions before applying them if it identifies that the normal form of the λ-
abstraction will be needed, and is as such able to perform fewer β-reduction steps than our
semantics or λc. However, it can also cause the terms being reduced to grow from their
initial size; having to be analysed again when the λ-abstraction is applied, potentially
causing quadratic complexity of the abstract machine, although further study would
be needed to identify if this actually happens.1 Besides, we lose the subterm property
again, which we wanted to enforce to make sure compilation to a virtual machine or even
machine code was possible.

8.1.7. Accattoli, Condoluci, and Coen’s SCAM

In [ACC21], Accattoli, Condoluci, and Coen present the SCAM, an abstract machine
for strong call-by-value reduction. Whereas Grégoire and Leroy’s focus was on practical
efficiency, their focus is on theoretical complexity, allowing them to prove a bilinear

1This is not unlike Lévy’s optimal reduction, which makes an optimal number of β-reductions among
all possible reduction strategies, but comes at a potentially non-elementary administrative cost to
find which redex needs to be reduced.
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O(mn) complexity for the SCAM, where m is the number of β-reduction steps and n
the size of the initial term, instead of the usual quasibilinear O(mnlogn) complexity due
to environment lookups. It shows the subtleties and pitfalls of efficient open reduction.
The general focus on complexity in Accattoli’s papers is something we kept in mind while
designing our semantics and abstract machines, in both this part and the next, to ensure
our machines do not introduce unnecessary inefficiencies.

8.1.8. The RKNL machine

In [BCD22], Biernacka, Charatonik, and Drab present the RKNL machine, a simple
and efficient abstract machine for strong call-by-need calculus. While developed in-
dependently, this machine is actually isomorphic to our big-step semantics for strong
call-by-need, and can (and is) obtained mechanically by CPS-transformation from a pro-
gram almost identical to our eval-deepen presentation in section 5.2, which they describe
as a modified version of Crégut’s KN machine. They perform further analysis of the
obtained machine, including proofs of soundness, correctness and complexity; resulting
in the quasibilinear complexity we expected. On the other hand, all proofs are paper
proofs only, making our Coq proof give increased confidence in the RKNL machine.

8.1.9. Verified compilation of functional languages

Closely related, there has been a lot of work on verified compilation of functional lan-
guages. Dargaye [Dar09] verified a compiler for a small subset of ML to Cminor, an
intermediate language used in CompCert, but without verifying the code of the garbage
collector. McCreight, Chevalier, and Tolmach [MCT10] established a framework for ver-
ified compilation of garbage-collected languages by providing an intermediate language,
GCminor, which includes primitives for allocation and specifying GC roots, and compil-
ing it to Cminor. The CakeML project [Kum+14] is a verified optimising compiler for
a large subset of Standard ML directly to machine code, which is also able to bootstrap
itself; later extended with a second frontend, PureCake [Kan+23], for a lazy, purely-
functional language. A bit earlier, Stelle and Stefanovic [SS18] were the first to verify
compilation of call-by-need semantics, from the λ-calculus to a virtual machine. Swier-
stra [Swi12], for the KAM, and Kunze, Smolka, and Forster [KSF18], for call-by-value,
derived machines for the λ-calculus by refining successive machines directly from the
small-step semantics, related to how we obtained our strong call-by-need semantics by
refining successive big-step semantics. There has also been work on verified compilation
of Coq, in particular the CertiCoq project [Ana+17], a compiler from Coq to Cminor,
or the work on OpenZAM by Grégoire and Leroy [GL02], compiling Coq to a virtual
machine, and the only work of this list doing open, and not just weak, reduction.
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8.1.10. Graph reduction for the λ-calculus

The idea of using graph reduction as a λ-calculus evaluation strategy allowing sharing is
not new, and could already be found in Wadsworth’s PhD thesis [Wad71]. An introduc-
tion to graph reduction and its implementation can be found in Jones’s book [Jon87].
The spineless tagless G-machine [Jon92] is one efficient implementation among others
of graph reduction. However, graph reduction was often viewed as an implementation
detail and waited a long time before being formally studied [SW10; BLM05]. Another
use of graph reduction has been for the implementation of optimal reduction by Lamping
[Lam90], later made simpler and more efficient by Gonthier, Abadi, and Lévy [GAL92].
Asperti, Giovanetti, and Naletto [AGN96] created an abstract machine for these algo-
rithms. These algorithms perform a minimal number of β-reductions, by sharing not
only subterms, but contexts. However, this comes at a steep cost: Lawall and Mairson
[LM96] first proved that the cost of bookkeeping of these algorithms was at least ex-
ponential; Asperti, Coppola, and Martini [ACM04] later proved that the cost was even
non-elementary in the number of β-reductions. While this shows the optimal number
of β-reductions is not a good cost model of the λ-calculus, the picture is not as bleak
as it appears: it is conjectured by [Asp17] that this cost is mainly due to necessary
duplication, and the actual overhead is only polynomial.

8.2. Future work

8.2.1. A virtual machine for strong call-by-need reduction

While the semantics we gave in section 4.3 lead quite straightforwardly to the OCaml im-
plementation described in chapter 5, compiling the terms depends on having a deepening
function, which operates on dynamically-known terms only, preventing the mechanical
transformation to a virtual machine we showed at the beginning. The idea amounts to
having a runtime, as in most programming languages, which would provide this function.
We would then add a single opcode DEEPEN, which would call this function, examining
the term on which it is called, and recursively calling itself as needed to deepen the inner
subterms. We have however not fully written the rules of such a virtual machine yet,
and this remains as future work.

8.2.2. Complexity analysis

Analysing the complexity of this strong call-by-need semantics (or its corresponding
OCaml code) is not obvious. While we can quite easily give a bound depending on the
number of β-reductions that happened at runtime, it is harder to quantify this number.
We tentatively want to say that the number of β-reductions is optimal under the con-
straint that we never reduce under a term λx.t before applying it, but properly defining
what this means and proving it are still future work.
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9. An efficient strategy for convertibility

9.1. Motivations

9.1.1. Early failure

In the first part of this thesis, we approached the question of proving the convertibility
of two λ-terms as a question of computing their normal forms, and then comparing
them. However, we sometimes can conclude that t1 and t2 are not convertible much
earlier. Indeed, if t1 is x and t2 is f (exp2 100) (with x, f free variables), then we can
immediately conclude that they are not convertible, without computing1 the normal form
of exp2 100.

To do that, we simply need to compute the head-normal form of both terms, which we
can compare before further computation.

9.1.2. Early success: controlling the unfolding of constants

When encountering a convertibility problem of the form f t1
?≡ f t2, where f is a defined

constant, the naïve solution is to unfold f to get its definition d, and to continue with
the problem d t1

?≡ d t2. However, sometimes we can conclude about convertibility much
faster! Indeed, if t1 ≡ t2, then f t1 ≡ f t2, and we do not need to unfold f to be
able to conclude this. When f is an expensive function to compute, this can make the
convertibility test significantly faster, as can be seen on the problem exp2 (add 99 1) ?≡
exp2 100.

However, if t1 ̸≡ t2, then we are not able to conclude anything about whether f t1 and
f t2 are convertible without unfolding f . Indeed, if f is the identity function, they are
not convertible, while if f is a constant function, they are convertible, so we need to
know the definition of f to be able to conclude.

This gives us a first strategy, which is the one implemented in Coq: when trying to
prove f t1 ≡ f t2, first try to prove the convertibility of t1 and t2, and if they are not
convertible, then fall back to unfolding the definition of f . We will first show a way to
implement this strategy in section 9.2 to introduce the idea behind our more efficient
machine. However, while this is a good heuristic, it can lead to performing expensive

1Here and in the following, we assume we use Peano integers, which are represented in unary, so
computing n takes time at least O(n). As such, exp2, the function that associates 2n to n, is the
archetypal expensive function: when run on inputs of size O(n), it takes time O(2n) to complete.
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additional work. Indeed, if f is a constant function such as always0 (defined as λx.0),
then always0 (exp2 99) ≡ always0 (exp2 100), but trying to check the convertibility
of exp2 99 and exp2 100 will take a very long time, while unfolding f and performing
(lazy) β-reductions will prove convertibility instantaneously.

9.1.3. Parallel computation

At first the solution to the problem outlined above could be to find a good heuristic
about whether we should unfold f or prove convertibility of its inputs. If we had an
untrusted oracle for convertibility, we could simply ask the oracle whether t1 and t2 are
convertible, and if the oracle answers “yes”, check that t1 and t2 are indeed convertible,
and if it answers “no”, unfold f . Without such an oracle, it looks like our only option is
to find a “good enough” heuristic. However, this relies on an incorrect premise that we
need to either unfold f or to prove convertibility of its arguments first. Our approach
tries to get the best of these ideas by trying to do both of these things in parallel. If
one of the parallel computations is able to prove convertibility, we can abort the other
and report that f t1 ≡ f t2. If both computations run to their end and are unable to
prove convertibility, then the terms are not convertible and we have our answer as well.2

Likewise, if we are considering the problem x t1 t2
?≡ x u1 u2, we examine in parallel

the problems t1
?≡ u1 and t2

?≡ u2, and if one of them proves non-convertibility, then
we know the initial terms were not convertible either, without having to decide which of
these problems to examine first. A machine implementing these ideas will be presented
in the remainder of this chapter, beginning in section 9.3.

9.2. Reduction to weak head normal form

We first show a well-known strategy, similar to the one used by Coq, for mixing convert-
ibility and evaluation, and design an abstract machine that can be used for it. With such
an abstract machine in mind, we will move on to a novel approach reducing terms in par-
allel, allowing to get faster results in many cases. In this basic strategy, we reduce terms
to their head-normal form for →β (and not →βδ), and then compare both head-normal
forms. If both head-normal forms have the same shape and the same head constant, for
instance f t1

?≡ f t2, we can try to prove that corresponding arguments are convertible.
If not all of them are convertible, or if the terms have a different shape and at least one
of them has a head constant, we need to unfold the head constant and continue reducing.
Except if we could prove convertibility earlier because we had the same head constant
and all the arguments were convertible, we will finally end in a state where both head

2Technically speaking, we only need to prove non-convertibility when f has been unfolded, since f t1
and f t2 are convertible if and only if they are after f has been unfolded, while we have only one
direction of implication if we consider the convertibility of t1 and t2. However, by the time we noticed
this, the implementation was written and its Coq proof was almost finished, which is why we decided
not to fix this minor inefficiency. Adapting the code and the proof should require no novel ideas, but
we did not have the time to do so in the Coq proof.
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will be variables, and we are in weak head normal form for →βδ. In this case, both terms
are convertible if and only if they have the same shape (either both λ-abstractions, or
both inert terms with the same head variable), and all the corresponding subterms are
convertible (note there can be none at all, which is the base case of our recursion): for
instance, if x and y are both variables, x t1 ≡ y t2 if and only if x = y and t1 ≡ t2.

In order to be able to do this efficiently, we need to reduce the terms to their head-
normal form, while preserving the sharing of computations between consecutive runs.
For instance, if the weak head normal forms are x t1 and x t2, we need to be able to
share the computations done to compute these weak head normal forms with those for t1
and t2. This will be done using a global machine state with lazy values, that are updated
after being computed to avoid recomputation, and shared between one computation and
the next, so that any lazy value that was evaluated during the computation of x t1 remains
evaluated when computing the weak head-normal form of t1. The reduction rules will be
similar to the reductions to normal form, but with the reductions of arguments delayed
to when they are needed. The machine has the property that once it has produced a
weak head normal form, we can restart it with other terms (like t1 and t2 in our case),
while preserving the store (which holds the results of computation of lazy values), to
keep the sharing of computations between those successive runs.

This abstract machine has four components, like the LazyKAM shown in section 2.8.
They serve the same purpose, so let us recall what they mean:

• the code: either a value or a pair of a term and an environment,

• the stack: a list of values,

• the dump: a list of computations waiting for the current computation to be forced,

• and the store: a mapping from references to lazy or computed values.

The values in the store are either:

• a lazy value L (t, e), corresponding to a term t that will need to be evaluated in
environment e,

• a lazy application of a value to a stack, A (v, π): the result of applying v to π,

• a completed computation D v with result v,

• a marker that the value is being computed □.

The values themselves can be one of:

• a store reference a, used when a lazy value is created so that we can update its
result later,

• a λ-abstraction (λx.t, e, y, v), given by a term which is a λ-abstraction, an en-
vironment, a free variable name, and a value corresponding to the body of the
λ-abstraction after reduction,
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• an inert term (x, π, ∅) or (c, π, v), which is given by a free variable or a constant,
a stack, and in the case of a constant, a value corresponding to the result after
unfolding the constant.

The last case leads us to store a constant c expanding to v as (c, [], v). Other presentations
use instead a global map from constants to their definitions. However, the global map
approach is inferior to our approach when some constants are not in normal form, for
instance if there are constants of the form (λn.λx.t) (exp2 30), While unusual in user-
written constants, this is very likely to occur as the result of λ-lifting. With a simple
global map from constants to their definitions, we will either end up reducing the constant
each time it is applied, or reducing the constant when we encounter it first, even if its
weak head normal form is never needed.

Besides, we want to be able to share computation between partial applications of defined
constants. For instance, consider (λu.f (u y) (u z)) (c x). Here, c x might make arbitrary
computations, which we do not want to be duplicated when we evaluate independently
u y and u z. The value corresponding to c x will then be of the form (c, x :: [], a) with a
being a reference to A (v, x :: []), whose computation will be shared among both partial
applications.

The initial state of the machine for a given term t has the stack, dump and store empty,
and code (t, e), where e is an environment binding the name of each constant c to its lazy
normal form L (u, e′), with u the body of the constant and e′ the environment binding
all previous constants (this takes only linear space thanks to sharing).

The final states of the machine, having computed a weak head normal form, correspond
to the code being a value which is not lazy, and the stack and dump being empty. The
weak head normal form corresponds to that value; and from there, the machine can be
restarted with other (lazy) values to compute their weak head normal forms, simply by
taking these values as the code of the machine, using an empty stack and dump, and,
crucially to avoid recomputation, reusing the store.

The full rules of the machine are shown in Figure 9.1. Here is the explanation of what
these rules do:

• ⇝a handles application by pushing a lazy value corresponding to the argument on
the stack;

• ⇝l loads the value corresponding to variable x from the environment;

• ⇝f1 and ⇝f2 force a lazy value corresponding to a store reference by pushing the
status of the stack to the dump and replacing the store reference by a marker □;

• ⇝f3 loads a lazy value that has already been computed;

• ⇝λ creates a value from a λ-abstraction by creating a lazy value for the normal
form of its body;
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9.2. Reduction to weak head normal form

Code Stack Dump Store
(t1 t2, e) π D E

⇝a (t1, e) a :: π D (a 7→ L (t2, e)) ⋆ E
(x, e) π D E

⇝l e(x) π D E
a π D (a 7→ L (t, e)) ⋆ E

⇝f1 (t, e) [] (a, π) :: D (a 7→ □) ⋆ E
a π D (a 7→ A (v, π2)) ⋆ E

⇝f2 v π2 (a, π) :: D (a 7→ □) ⋆ E
a π D (a 7→ D v) ⋆ E

⇝f3 v π D (a 7→ D v) ⋆ E
(λx.t1, e) π D E

⇝λ (λx.t1, e, y, a) π D (a 7→ L (t1, e ⋆ (x 7→ (y, [], ∅)))) ⋆ E y fresh
v [] (x, π) :: D (x 7→ □) ⋆ E

⇝s v π D (x 7→ D v) ⋆ E v ̸= a

(λx.t1, e, y, v1) v2 :: π D E
⇝β (t1, e ⋆ (x 7→ v2)) π D E

(x, π1, ∅) π2 D E
⇝n1 (x, π1 ++ π2, ∅) [] D E if π2 ̸= []

(c, π1, v) π2 D E
⇝n2 (c, π1 ++ π2, a) [] D (a 7→ A (v, π2)) ⋆ E if π2 ̸= []

Figure 9.1.: Machine for reduction to weak head normal form
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• ⇝s records the result of a forced computation (when it is not itself a store reference)
and resumes the previous computation;

• ⇝β performs β-reduction by popping a value from the stack and adding it to the
environment of the closure;

• ⇝n1 and ⇝n2 capture the stack when applying a neutral value, and, in the case
of ⇝n2 , creates a new lazy value corresponding to the result after unfolding the
constant.

The machine has computed a weak head normal form when the code is a value which
is not a store reference, and both the stack and the dump are empty. We can then
simply compare the results, using the strategy detailed above, re-running the machine if
necessary to compute further head normal forms. When running the machine again, we
simply reuse the store from the previous run, initialize the code with the value we want
to reduce, an empty stack and an empty dump.

To compare weak head normal forms, we use a crucial property: two weak →βδ head
normal forms that do not have a constant as the head are convertible if and only if
they both have the same shape, and the subterms at the same positions are convertible.
Formally, two weak head normal forms are convertible if and only if one of the following
conditions is true:

• both head normal forms are λ-abstractions λx.t and λy.u, and t[x := z] ≡ u[y := z],
where z is a fresh variable;

• both head normal forms are x t1 . . . tn and x u1 . . . un, with x a free variable,
and for all i, ti ≡ ui;

• one head normal form has a constant as head, and after unfolding the constant and
reducing again to head normal form, one of the three conditions is true.3

9.3. Parallel convertibility

Our approach for a more efficient machine relies on trying several convertibility problems
in parallel. In order to do that, we have a set of convertibility threads, where each thread
is a convertibility problem between two (partially reduced) terms. Each of these threads
works in the same way as the convertibility test we have seen in the previous section, by
reducing both terms to weak head normal form, comparing their shapes, and continuing
with the arguments if the shapes match. The main difference is that instead of performing
successive convertibility tests after reducing to weak head normal form, we now perform
them in parallel by creating new convertibility threads, allowing us to sometimes give a
result before all of these threads finish. For instance, if we consider x t1 u1

?≡ x t2 u2,
we create two new convertibility threads for t1

?≡ t2 and u1
?≡ u2, and we run those

3This is well-defined, because there is no infinite chain of reductions, so this case can only happen a
finite number of times.
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in parallel: if either proves non-convertibility, we can conclude about non-convertibility
without waiting for the other one.

9.3.1. Avoiding recomputation

When naïvely performing convertibility problems in parallel such as t1
?≡ t2 and d t1

?≡
d t2, there is duplicate work that is done when performing reductions inside t1 or t2.
To avoid this problem, we add another kind of thread, called reduction threads. These
threads perform reductions to find the weak head normal form of a term, and convert-
ibility threads has exactly two reduction subthreads working to compute the weak head
normal forms of the terms being tested. When forcing a lazy value, we start a new reduc-
tion thread for the computation of the lazy value, and wait for that reduction thread to
return a result before resuming. If another thread wants to force the value as well, it will
pause itself as well and wait for the thread that is running. When a reduction thread has
finished running, all threads that were waiting for it (both convertibility and reduction
threads) are resumed and can perform additional work based on the weak head normal
form of the thread.

9.3.2. The thread structure

We therefore have a two-kinded structure for threads. When the machine is in a given
state, we can draw the threads as an acyclic graph, where a thread p has an edge to a
thread q if p is waiting for a result from q. Since reduction threads will never have a
convertibility subthread, we can divide the threads into a group of convertibility threads
and a group of reduction threads, with edges only inside a group or a convertibility thread
to a reduction thread. Besides, convertibility threads have at most one parent (and
exactly one if they are not the convertibility thread trying to solve the initial problem),
while reduction threads have at most one child (another thread they are waiting for to
continue their computation). A representation of the thread structure can be seen in
Figure 9.2.

9.4. An abstract machine

9.4.1. Reduction threads

We first focus on reduction threads, since we can fully specify them independently of
conversion threads. A reduction thread performs reduction to weak head normal form,
and is a pair consisting in:

• the code, which is either a pair (t, e) of a term and an environment (mapping
variables to values), or a value v,

• and a stack π, a list of values.
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A

B

C D E

q r s t u v

w x

y z

Figure 9.2.: The thread structure. The nodes above the middle line (uppercase letters)
correspond to convertibility threads, while those below (lowercase letters) correspond to
reduction threads.

Here, a value is one of:

• a thread identifier r, where the value is given by the (future) result of the thread,

• a λ-abstraction (λx.t, e, y, v), composed of a term which is a λ-abstraction, an
environment, a free variable name, and a value corresponding to the body of the
λ-abstraction after reduction,

• or an inert term (x, π, ∅) or (c, π, v), composed of a free variable or a constant,
a stack, and in the case of a constant, a value corresponding to the result after
unfolding the constant,

Notice how we no longer have a concept of lazy values. Indeed, we use thread values
instead, with lazy values encoded as thread values. Therefore, in the reduction rules
below, we write lazy(t, e) to denote a thread reference r, where r is a new thread defined
by:

Code Stack
(t, e) []

We also note finished(r, v), and say that thread r finished with value v, if v is not a
thread and thread r is equal to:

Code Stack
v []

Finally, we write apply(v, π) to denote a thread reference r where r is a new thread
defined by:

Code Stack
v π
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Code Stack Code Stack
(t1 t2, e) π ⇝a (t1, e) lazy(t2, e) :: π

(x, e) π ⇝l e(x) π

(λx.t1, e) π ⇝λ (λx.t1, e, y, v)

where v = lazy(t1,

e ⋆ (x 7→ (y, [], ∅)))

π y fresh

r π ⇝s v π if finished(r, v)
(λx.t1, e, y, v1) v2 :: π ⇝β (t1, e ⋆ (x 7→ v2)) π

(x, π1, ∅) π2 ⇝n1 (x, π1 ++ π2, ∅) [] if π2 ̸= []

(c, π1, v) π2 ⇝n2 (c, π1 ++ π2,apply(v, π2)) [] if π2 ̸= []

Figure 9.3.: Single-thread reduction rules of the abstract machine.

r̄⟨(t1 t2, e), π⟩ ⇝a νs.r̄⟨(t1, e), s :: π⟩ | s̄⟨t2, e⟩
r̄⟨(x, e), π⟩ ⇝l r̄⟨e(x), π⟩

r̄⟨(λx.t1, e), π⟩ ⇝λ νs.r̄⟨(λx.t1, e, y, s), π⟩ | s̄⟨t1, e ⋆ (x 7→ (y, [], ∅))⟩ y fresh
r̄⟨s, π⟩ | s̄⟨v, []⟩ ⇝s r̄⟨v, π⟩ | s̄⟨v, []⟩ v not a thread

r̄⟨(λx.t1, e, y, v1), v2 :: π⟩ ⇝β r̄⟨(t1, e ⋆ (x 7→ v2)), π⟩
r̄⟨(x, π1, ∅), π2⟩ ⇝n1 r̄⟨(x, π1 ++ π2, ∅), []⟩ if π2 ̸= []

r̄⟨(c, π1, v), π2⟩ ⇝n2 νs.r̄⟨(c, π1 ++ π2, s), []⟩ | s̄⟨v, π2⟩ if π2 ̸= []

Figure 9.4.: Reduction rules of the abstract machine, with a π-calculus inspired syntax.
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9. An efficient strategy for convertibility

The reduction rules we obtain for a single thread are show in Figure 9.3. Once again, we
have a machine satisfying the subterm property, and we will see in the next chapter how
it can be transformed into a virtual machine.

Notice that there is almost always a reduction rule that applies, in which case we say our
thread is running , except in the following two cases:

• code is r and thread r is not finished, in which case our thread is waiting on thread
r to perform more computations,

• code is v and stack is [], in which case our thread is finished and the other threads
waiting on it can resume their work.

We can easily show that threads containing references to other threads form an acyclic
graph, therefore it is also the case for threads waiting on other threads. Besides, since a
thread by definition cannot be waiting on a finished thread, either all threads are finished
or there is at least one running thread.

We can also notice that this presentation of the machine sometimes creates useless
threads, such as the one for the normal form of a λ-abstraction when immediately ap-
plying it. In practice, we can add a combined rule so this does not happen:

Code Stack Code Stack
(λx.t1, e) v :: π ⇝λβ (t1, e ⋆ (x 7→ v)) π

Another way to see the rules is inspired from process calculi, which we present in Fig-
ure 9.4. We do not fully encode the rules into the π-calculus, but instead simply take
inspiration from it to write the rules shown: we write r̄⟨c, π⟩ for a thread r with code c
and stack π, while νr creates a new thread name r.

9.4.2. Convertibility threads

Since convertibility threads have a tree structure, we can specify a complete convertibility
problem with an inductive definition. Thus, we now have the following grammar for
convertibility threads:

c ::= (v1, v2, ξ) | ⊤ | ⊥ | c1 ∧ c2 | c1 ∨ c2

Here, (v1, v2, ξ) means that value v1 is convertible with value v2, up to variables that
need to be renamed with ξ, ⊤ means the terms this convertibility thread started with
are convertible, ⊥ that they are not, c1 ∧ c2 that the result is the conjunction of the two
convertibility subproblems, and c1 ∨ c2 that it is the disjunction of them.
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9.4. An abstract machine

CReduce1
finished(r1, v1)

(r1, v2, ξ)⇝ (v1, v2, ξ)

CReduce2
finished(r2, v2)

(v1, r2, ξ)⇝ (v1, v2, ξ)

CAnd1
c1 ⇝ c′1

c1 ∧ c2 ⇝ c′1 ∧ c2

CAnd2
c2 ⇝ c′2

c1 ∧ c2 ⇝ c1 ∧ c′2

COr1
c1 ⇝ c′1

c1 ∨ c2 ⇝ c′1 ∨ c2

COr2
c2 ⇝ c′2

c1 ∨ c2 ⇝ c1 ∨ c′2

CAndTrue

⊤ ∧⊤⇝ ⊤

CAndFalse1

⊥ ∧ c⇝ ⊥

CAndFalse2

c ∧ ⊥⇝ ⊥

COrFalse

⊥ ∨⊥⇝ ⊥

COrTrue1

⊤ ∨ c⇝ ⊤

COrTrue2

c ∨ ⊤⇝ ⊤

Figure 9.5.: Structural rules for convertibility threads

We first start with the structural rules for the convertibility threads shown in Figure 9.5.
The rules CReduce1 and CReduce2 express the fact that we are allowed to substitute
a finished thread with its result; the rules CAnd1, CAnd2, COr1 and COr2 allow
reduction of convertibility threads under conjunctions and disjunctions; the remaining
rules express the logic properties of short-circuiting conjunction and disjunction.

The rules show in Figure 9.6 are for the convertibility tests of two non-thread values. In
the case where neither side has a constant that could be unfolded, the test is easy to
perform. If there are constants, a possibility is always to unfold one of the constants,
and if both sides have the same constant, we can also try to prove convertibility of the
arguments. To express the convertibility of two stacks π = v and π′ = v′, we write
cstk(π, π′, ξ) to denote ⊥ if |π| ≠ |π′|, and (v1, v

′
1, ξ) ∧ · · · ∧ (vn, v

′
n, ξ) otherwise.

In Figure 9.6, the rule CAbs deals with the convertibility of two λ-abstractions, record-
ing that their variables correspond in ξ, and testing the convertibility of their bodies.
CVarEq and CVarNEq deal with convertibility of free variables, expressing that they
must be the same variable, with stacks that are convertible with one another, while CAb-
sVar and CVarAbs express that variables and λ-abstractions are never convertible.4

Finally, CUnfold1 and CUnfold2 are rules for unfolding constants on the left or on
the right, while CConst expresses that if we have the same constant on each side, then

4If we wanted to support η-expansion as well, these would be the two rules we would need to modify.
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CAbs

((λx1.t1, e1, y1, v1), (λx2.t2, e2, y2, v2), ξ)⇝ (v1, v2, (y1, y2) :: ξ)

CVarEq
(x1, x2) ∈ ξ

((x1, π1, ∅), (x2, π2, ∅), ξ)⇝ cstk(π1, π2, ξ)

CVarNEq
(x1, x2) /∈ ξ

((x1, π1, ∅), (x2, π2, ∅), ξ)⇝ ⊥

CAbsVar

((λx1.t1, e1, y1, v1), (x2, π2, ∅), ξ)⇝ ⊥

CVarAbs

((x1, π1, ∅), (λx2.t2, e2, y2, v2), ξ)⇝ ⊥

CUnfold1

((c1, π1, v1), v2, ξ)⇝ (v1, v2, ξ)

CUnfold2

(v1, (c2, π2, v2), ξ)⇝ (v1, v2, ξ)

CConst

((c, π1, v1), (c, π2, v2), ξ)⇝ cstk(π1, π2, ξ) ∨ (v1, v2, ξ)

Figure 9.6.: Convertibility rules for non-thread values

convertibility of the arguments is enough to prove convertibility of the complete term,
but we also need to unfold the constant in case the arguments are not convertible.

9.5. Putting threads to sleep

Due to the presence of short-circuiting evaluation of ∧ and ∨, sometimes a convertibility
thread is running but its result will never be used. Although the convertibility threads
themselves can simply be garbage-collected, they can have references to reduction threads
for which this is not as simple. Indeed, we do not want to perform reductions inside a
thread whose value will not matter anyway, but although a subthread in this form may no
longer be needed for now, it might be used later. To avoid this, we add a reference count
to each thread, indicating whether a thread is active: an active thread is one for which
the reference count is non-zero. We enforce the invariant that the reference count of a
thread is equal to the number of times the thread appears in an active position, which
are the values of a basic conversion thread, or directly as the code of another active
thread.5 Then, only active threads are allowed to be reduced by the rules for reduction
threads, and inactive threads are not said to be running. For instance, in Figure 9.2, the
reduction threads r, y and z are running, while all other reduction threads are inactive.

5Although this definition may appear to be cyclic, the fact that threads holding references to one
another form an acyclic graph ensure that it is well-defined.
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Once this is done, the changes to the reduction rules are minimal: besides only allow-
ing active threads to be reduced and initializing new threads created with lazy(t, e) or
apply(v, π) with a reference count of 0 (since they are not in an active position), the
only change to the reduction rules is that in ⇝l, where we replace the code (x, e) with
e(x), we need to increment the reference count of e(x) if it is a thread. This will then
have the additional effect of starting the thread if it was a lazy value, since the reference
count will rise from 0 to 1 and the thread will become active. Technically, we would
also need to modify the rule ⇝s to decrease the reference count of r, but since finished
threads can never be reduced again, their reference count does not matter.

The changes to the rules for convertibility threads are slightly more extensive. First,
in all rules that add values in active positions need to increase the reference count of
those values if they are threads. This applies to v1 and v2 in CAbs and CConst, v1
in CUnfold1 and v2 in CUnfold2, as well as all the π1i and π2i when we create a
cstk(π1, π2, ξ) thread, if |π1| = |π2|. Moreover, and this is why we needed to add these
reference counts, in all short-circuit rules (CAndFalse1, CAndFalse2, COrTrue1
and COrTrue2), the reference counts of all reduction threads that appear in active
positions in the deleted thread c need to be decremented according to their multiplicities.

Finally, since the notion of active position depends on which threads are active, changing
the reference count of a thread r1 whose code is another thread r2 needs to increase the
reference count of r2 if r1 becomes active, and decrease it if r1 becomes inactive.

In a way, this is a form of garbage collection with reference counting: we have an acyclic
graph of threads with edges meaning that the result of a thread is needed by another
thread, and we want to know which threads are accessible from a given set of roots
(active positions in the global convertibility thread). However, unlike garbage collection,
inactive threads will not necessarily stay inactive forever, and may become active again
if another thread requests their value. For instance, starting from a configuration like in
Figure 9.2, if the result of C is no longer needed, r will become inactive; but it could
become active again if another dependency appears, for instance if z needs the result of
r after some more computation. Besides, we want to continuously know which threads
are active, since they are the ones which are allowed to run, so adapting other strategies
of garbage collection would probably not work as well.

On the other hand, garbage collection remains an interesting question for our abstract
machine. Indeed, we want threads (especially lazy values) and other constructions that
can no longer change anything about computation to be completely deleted. To that end,
we rely on the garbage collection of the implementation.Still, we need to ensure that a
thread that is no longer relevant has no dangling pointer to it, so we cannot keep a list
of all threads.

Since we need to be able to reach the threads that have to run, we still keep a list of
active threads, which we update by adding or removing threads when they change status.
This alone would be enough to ensure garbage collection, but we can combine it with
another optimisation: instead of keeping a list of active threads, we keep a list of running
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threads. Those threads are precisely those which can perform a reduction, and this is
exactly what we need to write an efficient scheduler that picks a running thread, performs
a reduction step, and then continues with the next thread.

To maintain this list of running threads, we need to see in which conditions a thread
can start or stop running. The first possibility, which we have already considered, is
a thread changing its active status. Since we have the reference count, we can simply
add or remove the thread from the list of running threads if the active status change
causes a running status change. The other possibilities are related to thread termination
and waiting: a thread can stop running if it becomes finished, or if it blocks waiting on
another thread, and it can restart running if the thread it was waiting on finishes. Then,
a way to maintain this list of running threads is to add yet another field to threads, which
are a list of the threads currently waiting on it. Then, when a thread starts waiting on
another thread, it deletes itself from the list of running threads and adds itself to the
list of threads waiting on the child thread. Conversely, when a thread finishes, it adds
back all threads waiting for it in the list of running threads. Finally, we need to make
sure no inactive thread gets added to the list of running threads, and to do so, when
a thread waiting on another becomes inactive (respectively, becomes active), it removes
itself (resp. adds itself) from the list of threads waiting on its child. With these changes,
we always maintain the list of all running threads, and for a given thread, the length of
the list of threads waiting for it is equal to its reference count!6 Besides, there are no
more references to non-running threads except in positions which could potentially cause
the thread to be resumed later, thus making garbage collection possible. Finally, the cost
of bookkeeping is not excessive: if we use doubly-linked lists for all the lists mentioned
here, the additions and deletions can be done in O(1) time.7

The full rules for the reduction part of this machine are shown in Figure 9.7. There, we
assume that W , W2 are non-empty lists of threads (while Wε is a possibly empty list of
threads), while y is a fresh variable and rf is a fresh thread reference. There are three
additional rules compared to the presentation in Figure 9.3: ⇝d, ⇝f1 and ⇝f2 . This
is no surprise, as these are the only three rules concerned with thread scheduling: all
the other rules are simply isomorphic to the single-thread rules, and put the thread that
just ran at the end of the list of active threads; see the presentation of these rules in the
single-threaded case for details. On the contrary, rule⇝d is concerned with a thread that
just finished running, and wakes all other threads depending on it, while rules ⇝f1 and
⇝f2 deal with a thread wanting the result of a thread that has not yet finished running;
in that case, it adds itself to the list of threads waiting on the second thread, and adds
it to the list of active threads if needed.

6Here, we consider that convertibility subthreads with values being a given thread to be waiting on this
thread as well.

7We can unfortunately still get a linear behaviour: If a thread r1 is waiting for a single thread r2, itself
waiting for a single thread r3 and so on until rn, putting r1 to sleep will iterate over all these threads
until rn which will be put to sleep. Then, restarting r1 will iterate again over all the threads until
rn which will be restarted, resulting in O(n) behaviour. This can probably be improved by using a
better data structure for thread dependencies, but we did not investigate this further.
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Threads Active
(r 7→ (C (t1 t2, e), π,W )) ⋆ T r :: A

⇝a (r 7→ (C (t1, e),W, rf :: π)) ⋆ (rf 7→ (C (t2, e), [], [])) ⋆ T A :: r

(r 7→ (C (x, e), π,W )) ⋆ T r :: A
⇝l (r 7→ (V e(x), π,W )) ⋆ T A :: r

(r 7→ (C (λx.t, e), π,W )) ⋆ T r :: A
⇝λ (r 7→ (V (λx.t, e, y, rf ), π,W )) ⋆ (rf 7→ (C (t, e ⋆ (x 7→ (y, [], ∅))), [], [])) ⋆ T A :: r

(r 7→ (V v, [],W )) ⋆ T r :: A
⇝d (r 7→ (V v, [], [])) ⋆ T A++W

(r 7→ (V r2, π,W )) ⋆ (r2 7→ (V v, [],Wε)) ⋆ T r :: A
⇝s (r 7→ (V v, π,W )) ⋆ (r2 7→ (V v, [],Wε)) ⋆ T A :: r

(r 7→ (V r2, π,W )) ⋆ (r2 7→ (c, π2, [])) ⋆ T r :: A
⇝f1 (r 7→ (V r2, π,W )) ⋆ (r2 7→ (c, π2, r :: [])) ⋆ T A :: r2

(r 7→ (V r2, π,W )) ⋆ (r2 7→ (c, π2,W2)) ⋆ T r :: A
⇝f2 (r 7→ (V r2, π,W )) ⋆ (r2 7→ (c, π2, r :: W2)) ⋆ T A

(r 7→ (V (λx.t1, e, y, v1), v2 :: π,W )) ⋆ T r :: A
⇝β (r 7→ (C (t1, e ⋆ (x 7→ v2)), π,W )) ⋆ T A :: r

(r 7→ (V (x, π1, ∅), π2,W )) ⋆ T r :: A
⇝n1 (r 7→ (V (x, π1 ++ π2, ∅), [],W )) ⋆ T A :: r

(r 7→ (V (c, π1, v), π2,W )) ⋆ T r :: A
⇝n2 (r 7→ (V (c, π1 ++ π2, rf ), [],W )) ⋆ (rf 7→ (V v, π2, [])) ⋆ T A :: r

Figure 9.7.: Rules for the abstract machine.
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9.6. Improved convertibility rules

While the formulation of the convertibility rules we showed are correct and what has
been both formalised and implemented, we actually need slightly different rules if we
want to have a complexity guarantee, as studied in chapter 12. Indeed, when we try to
prove or disprove convertibility between c t1 and c t2, while non-convertibility between
t1 and t2 gives no information about convertibility of c t1 and c t2, non-convertibility of
the unfolded versions is enough to prove non-convertibility of c t1 and c t2.

To get complexity guarantees, we introduce two additional connectors: ∥ and ∨∥, which
run two convertibility threads concurrently. For c1 ∥ c2, we assume both c1 and c2 will
yield the same result, so evaluation stops as soon as one of c1 and c2 has computed a
value. For c1∨∥ c2, the result is c2 but assuming c1 ⇒ c2, so that evaluation can stop as
soon as c1 is true, or as soon as c2 terminates.

CPar1
b ∈ {⊤,⊥}
b ∥ c⇝ b

CPar2
b ∈ {⊤,⊥}
c ∥ b⇝ b

CParOrTrue1

⊤∨∥ c⇝ ⊤

CParOr2
b ∈ {⊤,⊥}
c∨∥ b⇝ b

We also need to restrict CUnfold1 and CUnfold2 to the case where the other value is
not a constant, as well as modify CConst as following and add another rule CUnfold12:

CUnfold12
c1 ̸= c2

((c1, π1, v1), (c2, π2, v2), ξ)⇝ ((c1, π1, v1), v2, ξ) ∥ (v1, (c2, π2, v2), ξ)

CConst

((c, π1, v1), (c, π2, v2), ξ)⇝ cstk(π1, π2, ξ)∨∥ (((c, π1, v1), v2, ξ) ∥ (v1, (c, π2, v2), ξ))

This would not change much in the formalisation, but this is only useful if we add
sharing of convertibility threads, as mentioned in section 9.7: we would otherwise create
an extremely large number of duplicate convertibility threads when repeatedly applying
those rules.

We need to modify CConst because in some cases where the arguments are not con-
vertible, we should unfold only one side. Consider for instance the function f defined
as: λb.λn.if b then n else exp2 n, where exp2 is not a defined constant but has been
inlined inside the definition of f . On the convertibility problem f true (f false 100) ?≡
f false 100, we need to unfold f on the left only: the arguments are clearly not convert-
ible, but unfolding f on both sides would need to the expensive computation of exp2 100,
which is not needed if we unfold f on the left side only.
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9.7. Sharing (dis)equality proofs

In the machine we presented, there is sharing of reductions, thanks to the threads, and
sharing of subterms, such as in the reduction of (λx.λy.y x x) t. However, consider a
problem such as (λx.λy.y x x) t ?≡ (λx.λy.y x x) u, which becomes λy.y t t ?≡ λy.y u u
with both instances of t and both instances of u shared. In this case, we will obtain two
identical conversion subthreads trying to solve the problem t ?≡ u. While this is only
rarely a problem since most of the work happens in reduction threads, it can lead to an
exponential blowup in the number of conversion threads in some cases.

Fortunately for us, we already have most of the machinery available to solve this problem.
However, we must first notice that we cannot do naïve memoization (or a naïve union-
find structure) to solve it. Indeed, since we can have threads performing computations
in parallel, one thread may still be computing such a convertibility test while another
wants to perform the same test. The solution is of course the same as with reduction:
when we perform a convertibility test, we associate a new thread to the pair of values we
compare, and the result of the comparison will be the result of this thread. If another
thread wants to perform the same convertibility test, it needs to wait for the first thread
to finish computing the result and can then just report it.

The question remains about how best to exploit known equalities. Unfortunately, there
seems to be no simple answer about this. Indeed, even if we know that t1 ≡ t2, then
the tests t1

?≡ t3 and t2
?≡ t3 can have widely different costs. For instance, consider the

case where t1 is exp2 30, t2 is 230, and t3 is exp2 (add 29 1). Testing the convertibility
of t1 and t2 takes quite a bit of time, but then the test t1

?≡ t3 is almost instantaneous,
while the test t2

?≡ t3 will cost as much as the first test. Besides, any rule for choosing a
canonical member of the equivalence class will have to take into account the other term!

Even if we had a way to choose which of these tests to run, it still wouldn’t be enough.
Indeed, we could have three concurrent tests running (since we have parallelism), which
would be checking if t1 ?≡ t2, t1 ?≡ t3 and t2

?≡ t3. If one of these tests finishes with a
proof of convertibility, what should be done about the other tests? It seems difficult to
decide which of the others needs to be stopped and which is allowed to continue running,
since one can finish far faster than the other.

In our case, we want to get worst-case time bounds, so instead of using heuristics in these
cases, we can choose not to exploit known equalities. Thus, if we have t1 ≡ t2, then we
will test t1

?≡ t3 and t2
?≡ t3 independently, as if they could give different results (but

the reduction of t3 to head-normal form is still shared). With this version, we have at
most one convertibility test for each pair of values, and the number of values is linearly
bounded by the number of reduction steps.8

8More precisely, we have at most one convertibility test for each pair of values, where the first one is
a reduct from the first initial term, and the second one a reduct from the second initial term, which
bounds the total number of convertibility tests in a bilinear way. This is a lot better if one of the
initial terms is small and creates only a few values.

99



9. An efficient strategy for convertibility

The question of whether we can better exploit known equalities or inequalities remains
future work, and deserves to be explored further.
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10. A virtual machine

The abstract machine we saw in the previous chapter satisfies the subterm property
on each thread. For improved execution performance, we would like to translate it to a
virtual machine, like we can do with other abstract machines. Since the subterm property
holds on each thread, we will again need to have several threads, each with its own code.
We will thus first write a simple translation of our abstract machine to a virtual one, then
borrow ideas from the literature to optimise the performance of the virtual machine.

10.1. A first simple translation

To start with a simple translation, we use the fact that the machine satisfies the subterm
property, so we can associate sequences of opcodes to each subterm, as we did in sec-
tion 2.7 with other machines. However, since we sometimes have a value in code position
instead of a subterm and an environment, this will correspond to intermediate states
where part of the sequence of opcodes associated to a term are executed but not all of
them. We will extend the state of threads to have an accumulator besides the stack to
hold the value in such cases, as well as a return stack used to thread various pieces of
code together.

We can translate terms to sequences of opcodes as follows:

Jt1 t2Kρ = LAZY(Jt2Kρ; RET); Jt1Kρ; APP
JxKρ = VAR(indexρ(x)); FORCE

Jλx.tKρ = ABS(JtKx::ρ; RET)

Here, we see six different opcodes, for which we give intuitive semantics below.

• LAZY creates a new thread with the code given to it as argument and the current
environment, and pushes a reference to this thread on the stack,

• APP applies the accumulator to the top of the stack, pushing the rest of the current
code to the return stack,

• VAR fetches the numbered variable from the environment and puts it in the accu-
mulator,

• FORCE ensures the value of the accumulator is not a thread reference, by waiting
for its completion if necessary,
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• ABS puts a closure with the corresponding code in the accumulator,

• and RET either pops the return stack and resumes computation after the APP call,
or exits the current thread with the value of the accumulator if the return stack is
empty.

The rules, presented in Figure 10.1 are extremely close to the rules of the abstract
machine of the previous chapter. There are a couple differences, however: the new FORCE
opcode needs to do something when the accumulator is not a thread, while the previous
machine could directly continue the computation. This is captured by rule ⇝v: if the
accumulator is not a thread value, it is unchanged. Another change is the addition of
the RET opcode, which is used to thread together the call stack; this is simply rule ⇝r,
which would again correspond to an identity operation on the previous machine. Finally,
the application of inert terms will need to happen over many APP opcodes, instead of
a single application rules like we had previously. Fortunately, the change is relatively
straightforward, leading to rules ⇝n1 and ⇝n2 which take a single value from the stack
instead of the complete stack at once.

10.2. Striving for efficiency

While correct, the virtual machine above can be improved by drawing inspiration from
ideas in the literature, in particular from the OpenZAM machine [GL02]. We can also
see that π and s can share a single stack, since the pushes and pops are always well-
balanced.

There are two main ideas in the OpenZAM. The first is to use ZAM’s mechanism
for multiple application to avoid building intermediate closures when applying an n-ary
function to n arguments. The second is to optimise for the normal computation case, by
avoiding special cases in the application of functions, and instead having free variables
being functions with an opcode ACCU which captures the arguments, as the case for
application of a free variable would normally do.

With these ideas in mind, we can remove the return stack from the previous definition
of the machine, and replace it by a number-of-arguments counter as in the ZAM. The
compilation function does not change much, but is now specified in continuation-style,
where JtKρ c loosely corresponds to JtKρ; c.

Jt unKρ c = PUSHRETADDR(c); rev(LAZY(JuKρ RET)); JtKρ APPLY(n)

JxKρ c = VAR(indexρ(x)); FORCE; c

Jλxn.tKρ c = ABS(GRABn; JtKrev(xn)++ρ RET); c

There are several new opcodes and some changes to previous opcodes:
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Threads Active

(r 7→ R (LAZY(c2); c1, e, a, π, s,W )) ⋆ T r :: A

⇝a (r 7→ R (c1, e, a, rf :: π, s,W )) ⋆ (rf 7→ R (c2, e, ∅, [], [], [])) ⋆ T A :: r

(r 7→ R (VAR(i); c, e, a, π, s,W )) ⋆ T r :: A

⇝l (r 7→ R (c, e, e(i), π, s,W )) ⋆ T A :: r

(r 7→ R (ABS(c1); c2, e, a, π, s,W )) ⋆ T r :: A

⇝λ (r 7→ R (c2, e, (c1, e, y, rf ), π, s,W )) ⋆ (rf 7→ R (c1, (y, [], ∅) :: e, ∅, [], [], [])) ⋆ T A :: r

(r 7→ R (RET, e, v, π, c :: s,W )) ⋆ T r :: A

⇝r (r 7→ R (c, e, v, π, s,W )) ⋆ T A :: r

(r 7→ R (RET, e, v, π, [],W )) ⋆ T r :: A

⇝d (r 7→ D v) ⋆ T A++W

(r 7→ R (FORCE; c, e, v¬r, π, s,W )) ⋆ T r :: A

⇝v (r 7→ R (c, e, v¬r, π, s,W )) ⋆ T A :: r

(r 7→ R (FORCE; c, e, r2, π, s,W )) ⋆ (r2 7→ D v) ⋆ T r :: A

⇝s (r 7→ R (c, e, v, π, s,W )) ⋆ (r2 7→ D v) ⋆ T A :: r

(r 7→ R (FORCE; c, e, r2, π, s,W )) ⋆ (r2 7→ R (c, e2, a2, π2, s2, [])) ⋆ T r :: A

⇝f1 (r 7→ R (FORCE; c, e, r2, π, s,W )) ⋆ (r2 7→ R (c, e2, a2, π2, s2, r :: [])) ⋆ T A :: r2

(r 7→ R (FORCE; c, e, r2, π, s,W )) ⋆ (r2 7→ R (c, e2, a2, π2, s2,W2)) ⋆ T r :: A

⇝f2 (r 7→ R (FORCE; c, e, r2, π, s,W )) ⋆ (r2 7→ R (c, e2, a2, π2, s2, r :: W2)) ⋆ T A

(r 7→ R (APP; c1, e, (c2, e2, y, v1), v2 :: π, s,W )) ⋆ T r :: A

⇝β (r 7→ R (c2, v2 :: e2, ∅, π, c1 :: s,W )) ⋆ T A :: r

(r 7→ R (APP; c1, e, (x, π1, ∅), v :: π2, s,W )) ⋆ T r :: A

⇝n1 (r 7→ R (c1, e, (x, π1 :: v, ∅), π2, s,W )) ⋆ T A :: r

(r 7→ R (APP; c1, e, (c, π1, v1), v2 :: π2, s,W )) ⋆ T r :: A

⇝n2 (r 7→ R (c1, e, (c, π1 :: v2, rf ), π2, s,W )) ⋆ (rf 7→ R (APP; RET, e, v1, v2 :: [], [], [])) ⋆ T A :: r

Figure 10.1.: Rules for the basic virtual machine
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• APPLY(n) applies the accumulator to the top n values of the stack. Unlike the
old APP opcode, it does not push a return address on the stack as this is done by
PUSHRETADDR, nor does it move the arguments from the stack to the environment,

• GRAB moves the top value from the stack to the environment, possibly building a
closure in the case of an under-applied function,

• RET now performs application in case of an over-applied function.

Besides, we have two additional opcodes ACCU and ACCUCONST, respectively for the ap-
plication of free variables and of constants. The value of an inert term with a constant
term becomes (ACCUCONST, rev(π), c, v) from (c, π, v) for compatibility with the form of
values for abstractions. Closures still have a normal form which is computed one argu-
ment at a time, which is a compromise between simplicity of the machine and efficiency
of computation of normal forms, which are a lot less frequent than application of n-ary
functions to n arguments.

Once we adapt those opcodes from Grégoire and Leroy’s work, the rest of the translation
is relatively straightforward, and the full rules are presented in Figure 10.2.
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Threads Active

(r 7→ R (PUSHRETADDR(c2); c1, e, a, π, n,W )) ⋆ T r :: A

⇝p (r 7→ R (c1, e, a, ⟨c2, n⟩ :: π, n,W )) ⋆ T A :: r

(r 7→ R (LAZY(c2); c1, e, a, π, n,W )) ⋆ T r :: A

⇝a (r 7→ R (c1, e, a, rf :: π, n,W )) ⋆ (rf 7→ R (c2, e, ∅, [], 0, [])) ⋆ T A :: r

(r 7→ R (VAR(i); c, e, a, π, n,W )) ⋆ T r :: A

⇝l (r 7→ R (c, e, e(i), π, n,W )) ⋆ T A :: r

(r 7→ R (ABS(c1); c2, e, a, π, n,W )) ⋆ T r :: A

⇝λ
(r 7→ R (c2, e, (c1, e, y, rf ), π, n,W )) ⋆

(rf 7→ R (c1, e, ∅, (ACCU, [], y, ∅) :: [], 1, [])) ⋆ T
A :: r

(r 7→ R (RET, e, v, ⟨c, n⟩ :: π, 0,W )) ⋆ T r :: A

⇝r1 (r 7→ R (c, e, v, π, n,W )) ⋆ T A :: r

(r 7→ R (RET, e, (c2, e2, y, v1), π, n>0,W )) ⋆ T r :: A

⇝r2 (r 7→ R (c2, e2, (c2, e2, y, v1), π, n>0,W )) ⋆ T A :: r

(r 7→ R (RET, e, v, [], n,W )) ⋆ T r :: A

⇝d (r 7→ D v) ⋆ T A++W

(r 7→ R (FORCE; c, e, v¬r, π, n,W )) ⋆ T r :: A

⇝v (r 7→ R (c, e, v¬r, π, n,W )) ⋆ T A :: r

(r 7→ R (FORCE; c, e, r2, π, n,W )) ⋆ (r2 7→ D v) ⋆ T r :: A

⇝s (r 7→ R (c, e, v, π, n,W )) ⋆ (r2 7→ D v) ⋆ T A :: r

Figure 10.2.: Rules of the full virtual machine
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Threads Active

(r 7→ R (FORCE; c, e, r2, π, n,W )) ⋆ (r2 7→ R (c, e2, a2, π2, n2, [])) ⋆ T r :: A

⇝f1 (r 7→ R (FORCE; c, e, r2, π, n,W )) ⋆ (r2 7→ R (c, e2, a2, π2, n2, r :: [])) ⋆ T A :: r2

(r 7→ R (FORCE; c, e, r2, π, n,W )) ⋆ (r2 7→ R (c, e2, a2, π2, n2,W2)) ⋆ T r :: A

⇝f2 (r 7→ R (FORCE; c, e, r2, π, n,W )) ⋆ (r2 7→ R (c, e2, a2, π2, n2, r :: W2)) ⋆ T A

(r 7→ R (GRAB; c, e, a, v :: π, n+ 1,W )) ⋆ T r :: A

⇝g1 (r 7→ R (c, v :: e, a, π, n,W )) ⋆ T A :: r

(r 7→ R (GRAB; c, e, a, ⟨c2, n⟩ :: π, 0,W )) ⋆ T r :: A

⇝g2 (r 7→ R (c2, e, (GRAB; c, e, y, rf ), π, n,W )) ⋆ (rf 7→ R (c, e, ∅, [], 0, [])) ⋆ T A :: r

(r 7→ R (GRAB; c, e, a, [], 0,W )) ⋆ T r :: A

⇝g3 (r 7→ D (c, e, y, rf )) ⋆ (rf 7→ R (c, (ACCU, [], y, ∅) :: e, ∅, [], 0, [])) ⋆ T A++W

(r 7→ R (APPLY(n2); c1, e, (c2, e2, y, v1), π, n,W )) ⋆ T r :: A

⇝β (r 7→ R (c2, e2, (c2, e2, y, v1), π, n2,W )) ⋆ T A :: r

(r 7→ R (ACCU, e, (c2, e2, x, ∅), vn ++ ⟨c1, n2⟩ :: π, n,W )) ⋆ T r :: A

⇝n1 (r 7→ R (c1, e, (ACCU, vn ++ e, x, ∅), π, n2,W )) ⋆ T A :: r

(r 7→ R (ACCUCONST, e, (c2, e2, c, v1), vn ++ ⟨c1, n2⟩ :: π, n,W )) ⋆ T r :: A

⇝n2

(r 7→ R (c1, e, (ACCUCONST, vn ++ e, c, rf ), π, n2,W )) ⋆

(rf 7→ R (APPLY(n); RET, e, v1, vn, 0, [])) ⋆ T
A :: r

Figure 10.2.: Rules of the full virtual machine (cont.)
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11. Coq proof

11.1. Overview

We wrote a Coq proof that the parallel convertibility test we showed in the previous
chapters is correct. The formalisation includes a set of threads performing reduction,
as well as a tree structure describing the convertibility threads. As in the previous part
(chapter 6), we include the extension with constructors and pattern matching, and we
also include defined constants in our formalisation since they are necessary to have an
interesting thread structure. However, we do not prove the part of the previous machines
concerning the management of active threads, supposing that any thread might make a
step at any moment. The definition of terms is the same as in chapter 6, as is the
definition of the reduction relation.

11.2. States of the abstract machine

Reduction threads are specified by a map of identifiers (rthreadptr) to their description
(rthread). The inductive types defining a thread is given below:

Inductive cont : Type :=
| Kid : cont
| Kapp : value -> cont -> cont
| Kswitch :

list (nat * term) -> list value (* env *) ->
list (list nat * value) -> cont -> cont

with value : Type :=
| Thread : rthreadptr -> value
| Neutral : (nat * cont * option value) (* neutral *) -> value
| Clos : term -> list value (* env *) -> nat -> value -> value
| Block : nat -> list value -> value.

Definition env := list value.
Definition neutral := (nat * cont * option value)%type.

Inductive code :=
| Term : term -> env -> code

107



11. Coq proof

| Val : value -> code.

Record rthread := mkrthread {
rt_code : code ;
rt_cont : cont ;

}.

The type cont corresponds to the stacks π in chapter 9: the reason why the type is
more complex is that we handle pattern-matching as well, leading to the inclusion of the
Kswitch constructor. We can indeed see that without this constructor, cont is simply
isomorphic to a list of values, which was the type of the stack π. The type value is a
direct translation of the type of values in the machine, with the added case Block. As we
can see, in the definitions of cont and value, we had to manually expand the definitions
of neutral and env, since those could not be defined at the same time.

The definition of the state of the reduction threads then simply needs the mapping of
thread pointers to the corresponding threads, as well as a count for generation of fresh
variable names:

Record state := mkstate {
st_rthreads : list rthread ;
st_freename : nat ;

}.

We can also define the convertibility threads. As we do not try to formalise which threads
are active or not, we do not need a mapping of identifiers to threads, and we can simply
formalise them by an inductive structure over which we will be doing rewrites:

Inductive cthread :=
| cthread_done : bool -> cthread
| cthread_reduce : value -> value -> list nat -> list nat -> cthread
| cthread_and : cthread -> cthread -> cthread
| cthread_or : cthread -> cthread -> cthread.

The different cases are:

• cthread_done b, which is a convertibility thread which has run to completion with
b as the result of the convertibility test,

• cthread_and and cthread_or, which express the result of the convertibility test is
given either by the conjunction or disjunction of the results of two other threads,

• cthread_reduce v1 v2 varmap1 varmap2, which corresponds to a still-running
convertibility thread between the values v1 and v2, where varmap1 and varmap2
specify how to interpret the free variables of both values, which correspond to a
bound variable with a de Bruijn index corresponding to the position of the variable
in the list.

The global state of the machine is then simply defined as state * cthread.
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11.3. Definition of the reduction relation

With this definition, we can add the rules for evaluation. The rules for reduction threads
are completely independent of the convertibility threads, and can be specified as a func-
tion of type state -> rthreadptr -> state. Thus, the rules for a given reduction
thread are deterministic. When a thread cannot be reduced at that point, either because
the thread is waiting for another or because it is stuck due to a type error, we simply
return the unchanged state, a value which is enough to prove correctness (if the machine
produces a result, then it is the correct result), but neither the absence of type errors
(which might exist in the original program anyway, as we do not make any assumptions
about it) nor the absence of deadlocks (which cannot happen due to the acyclic graph
structure of reduction threads, although this is not proven).

For instance, the reduction rules for application, variables, as well as reading the output
of a finished thread are given below:

Definition step_r (st : state) (rid : rthreadptr) : state :=
match nth_error st.(st_rthreads) rid with
| None => st
| Some rthread =>

match rthread.(rt_code) with
| Term (app u v) e =>

let st2v := makelazy st v e in
update_rthread (fst st2v) rid {|

rt_code := Term u e ; rt_cont := Kapp (snd st2v) rthread.(rt_cont)
|}

| Term (var n) e =>
match nth_error e n with
| None => st (* variable not found *)
| Some v =>

update_rthread st rid {|
rt_code := Val v ; rt_cont := rthread.(rt_cont)

|}
end

| Val (Thread rid2) =>
match is_finished st rid2 with
| None => st (* Thread is not finished yet, wait *)
| Some v =>

update_rthread st rid {|
rt_code := Val v ; rt_cont := rthread.(rt_cont)

|}
end

[...]
end

end
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In this code, we can see that if rid does not reference an existing thread, then the
state is returned unchanged as a dummy value (as this function will only ever be called
on references to existing threads). We can also see the application case, where a new
thread is created using the function makelazy, which returns a new state and a value
corresponding to the newly created thread. While in the current version makelazy always
creates a new thread, even in the variable case, as this simplifies the proofs a little, there
is no technical difficulty in changing it to perform the variable optimisation as with the
strong call-by-need machine. Recall, however, that while this optimisation gives better
results in practice, it gives the same asymptotic complexity since this is call-by-need and
not call-by-name.

In the variable case, the variable is given by its de Bruijn index, as usual. We extract
its binding from the environment, and update the thread with the value read from the
variable. If the variable was not found in the environment, we return st unchanged,
as this corresponds to an incorrect variable reference, more precisely a non-closed input
term.1 Note that this time, st is not just a dummy value: while this case should never
happen during the operation of the machine, the invariants necessary to enforce this were
not proven. Thus, we need to return a state that will not affect the correctness proofs,
and for this, returning st unchanged is the best way, as this corresponds to a no-op.

In the case of a thread value, a reduction step would correspond to reading the result
of the thread once it has finished, thus introducing a dependency on this thread. The
is_finished function returns None is the given thread has not finished, and Some v if
it has finished with value v (meaning that its code is Val v and its continuation is Kid).
Thus, we update the value if the thread it depends on has finished. However, as we want
a total function here (and we are not trying to prove the absence of deadlocks), we simply
return st, as this thread cannot perform a reduction step for the moment. Again, this is
not just a dummy value: this can happen if we try to reduce a thread which is currently
waiting on another.

If we wanted to specify (and prove) that deadlocks and errors cannot happen, we could
modify the definition of step_r slightly, by returning a type with three different con-
structors: Step st, when we perform a reduction step with new state st, Error, when
the reduction step would result in an error (such as accessing an undefined variable), and
Waiting rid, when we are waiting on another thread with identified rid. Proving the
absence of errors and deadlocks could then be specified as saying that in all states acces-
sible from the initial state, we have no thread such that the result of step_r is Error, and
that from each thread, we can follow the chains of threads waiting on another until we
get to a thread which can step (this would be specified using an accessibility predicate).

However, proving the absence of errors would require proving a certain number of ad-
ditional invariants, for instance the fact that all terms are closed in their environment,

1We require closed input terms in the development, but this is not a limitation: to test convertibility of
two open terms, it suffices to add leading λ-abstractions to cover all bound variables of both terms.
The resulting terms are convertible if, and only if, the original open terms were convertible.

110



11.3. Definition of the reduction relation

or even the definition of forbidden patterns, and this work has thus not been done for
now. Proving the absence of deadlocks is probably easier, likely not requiring additional
invariants, but has not yet been done either.

With the definition above, we can give reduction threads their semantics, but we still need
to give the semantics of convertibility threads. Luckily, they do not modify the state,
so they can simply be given as a state -> cthread -> cthread -> Prop inductive
relation. We show several cases of this relation below to illustrate how it works.

Inductive cthread_red (st : state) : cthread -> cthread -> Prop :=
| cthread_reduce_1 :

forall rid v1 v2 varmap1 varmap2,
is_finished st rid = Some v1 ->
cthread_red st

(cthread_reduce (Thread rid) v2 varmap1 varmap2)
(cthread_reduce v1 v2 varmap1 varmap2)

| cthread_reduce_clos_clos :
forall t1 t2 e1 e2 x1 x2 v1 v2 varmap1 varmap2,

cthread_red st
(cthread_reduce (Clos t1 e1 x1 v1) (Clos t2 e2 x2 v2) varmap1 varmap2)
(cthread_reduce v1 v2 (x1 :: varmap1) (x2 :: varmap2))

| cthread_reduce_same_var_unfold :
forall x c1 c2 uf1 uf2 varmap1 varmap2,

cthread_red st
(cthread_reduce

(Neutral (x, c1, Some uf1))
(Neutral (x, c2, Some uf2))
varmap1 varmap2)

(cthread_or
(cthread_reduce uf1 uf2 varmap1 varmap2)
(cmp_cont_cthread c1 c2 varmap1 varmap2))

| cthread_or_false :
cthread_red st

(cthread_or (cthread_done false) (cthread_done false))
(cthread_done false)

| cthread_or_true_1 :
forall ct, cthread_red st

(cthread_or (cthread_done true) ct)
(cthread_done true)

| cthread_or_true_2 :
forall ct, cthread_red st

(cthread_or ct (cthread_done true))
(cthread_done true)

| cthread_or_1 :
forall ct1 ct2 ct3, cthread_red st ct1 ct2 ->
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cthread_red st
(cthread_or ct1 ct3)
(cthread_or ct2 ct3)

[...]
.

Here, we can first see that if we have a convertibility thread referencing a reduction
thread that has succeeded with value v1, then we can replace the thread reference to the
computed value. Moreover, we can see an example of a convertibility thread between
two values that have been evaluated to be closures: in this case, we record the name
of the free variables inside the variable maps, and we say that the original terms were
convertible if and only if the bodies of the functions are convertible. We can also see the
case of two identical head constants, in which case we generate a cthread_or of further
reductions and of the arguments.

The other kinds of reduction rules for convertibility threads are structural. First, if we
have a conjunction or a disjunction of convertibility threads, we can simplify it if we have
enough information to know the result, using short-circuiting evaluation when possible.
Second, we allow reduction under the branches of convertibility threads so that they will
eventually produce a result.

Finally, with both the rules for reduction and convertibility threads defined, we can define
the rules for a single step of reduction, which is either a reduction or a convertibility step:

Inductive step : (cthread * state) -> (cthread * state) -> Prop :=
| step_rthread :

forall ct st rid,
rid < length st.(st_rthreads) ->

step (ct, st) (ct, (step_r st rid))
| step_cthread :

forall ct1 ct2 st,
cthread_red st ct1 ct2 ->
step (ct1, st) (ct2, st).

11.4. Proving the correctness of reduction

With the reduction rules defined, we need to formalise the readback function to prove
the correctness. It is quite complex, with three mutually recursive inductive predicates
specifying the rules for threads, values and continuations. Here we give the definition for
the core λ-calculus.

Inductive read_thread st defs : list nat -> rthreadptr -> term -> Prop :=
| read_thread_val : forall varmap rid v c t h,

nth_error st.(st_rthreads) rid =
Some {| rt_code := Val v ; rt_cont := c |} ->
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read_val st defs varmap v t ->
read_cont st defs varmap c h ->
read_thread st defs varmap rid (fill_hctx h t)

| read_thread_term : forall varmap rid e el c t h,
nth_error st.(st_rthreads) rid =

Some {| rt_code := Term t e ; rt_cont := c |} ->
closed_at t (length e) ->
Forall2 (read_val st defs varmap) e el ->
read_cont st defs varmap c h ->
no_dvar t ->
read_thread st defs varmap rid (fill_hctx h (subst (read_env el) t))

with read_val st defs : list nat -> value -> term -> Prop :=
| read_val_thread :

forall varmap rid t,
read_thread st defs varmap rid t ->
read_val st defs varmap (Thread rid) t

| read_val_clos :
forall varmap t e el x vdeep tdeep,

Forall2 (read_val st defs varmap) e el ->
read_val st defs (x :: varmap) vdeep tdeep ->
convertible beta (subst (lift_subst (read_env el)) t) tdeep ->
no_dvar t -> length defs <= x < st.(st_freename) ->
x \notin varmap -> closed_at t (S (length e)) ->
read_val st defs varmap (Clos t e x vdeep)

(subst (read_env el) (abs t))
| read_val_neutral :

forall varmap x c h uf tuf,
read_cont st defs varmap c h ->
if_Some3 (fun v2 t2 def =>

read_val st defs varmap v2 t2 /\
convertible beta (fill_hctx h def) t2 /\
closed_at def 0)

uf tuf (nth_error defs x) ->
x < st.(st_freename) ->
(nth_error defs x = None -> In x varmap) ->
read_val st defs varmap (Neutral (x, c, uf))

(fill_hctx h (
match index Nat.eq_dec varmap x with
| None => dvar x
| Some n => var n
end))

[...]
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with read_cont st defs : list nat -> cont -> hctx -> Prop :=
| read_cont_kid : forall varmap, read_cont st defs varmap Kid h_hole
| read_cont_kapp :

forall varmap v c t h,
read_val st defs varmap v t ->
read_cont st defs varmap c h ->
read_cont st defs varmap (Kapp v c)

(compose_hctx h (h_app h_hole t))
[...]
.

The rules for the readback of a thread are quite straightforward: when it is a value,
we simply read the value and the continuation, and put the value inside the context
obtained as the readback of the continuation. When it is a term, we read its environment,
perform the substitution, read the continuation, and the result is obtained by putting
the substituted term inside the context of the environment. In that case, there are some
additional hypotheses to enforce invariants on the terms, namely that they may no longer
contain references to defined variables (which are expanded to normal variables with a
definition at the very beginning), and that the term is closed in its environment.

The rules for reading continuations are very simple as well: Kid is directly read to the
basic context h_hole, while for Kapp, we read the rest of the context and the value, and
the result is obtained by extending the context appropriately.

The complex part is really about reading values. Here, we have three cases in the core
λ-calculus: threads, closures, and neutral terms. For threads, we simply read the thread
and get its associated value.

For closures, we need its environment to be read to a given substitution. Moreover, we
check that the variable x defined by the closure is not part of the variable map associating
de Bruijn indices to bound variables, and that this variable x corresponds to a name that
will never be used again, and which was not a defined name at the beginning. We further
need, and that is the crucial part, that the value corresponding to the reduced body of
the λ-abstraction is β-convertible with the unreduced abstraction.2

For neutral values, most of the constraints are administrative, with the exception of the
same condition of convertibility with the value corresponding to an unfolded definition.

As can be seen, these mutually-recursive predicates are very complex, and become even
more so when adding the rules for constructors and pattern matching. Since we need to
perform a large number of proofs by induction on these predicates, we developed a small
library in Ltac2 for generating induction principles which are more general that Coq’s,

2Note that we only prove convertibility and not single-direction reduction here: this is a lot simpler
to prove, as very complex invariants are needed if we want to prove single-direction reduction to be
stable with respect to reductions happening inside the environment e.
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able to handle mutual induction as well as recursing under Forall, Forall2 and other
such constructions. Obtaining a general induction principle becomes as easy as:

Definition read_ind st defs :=
Induction For [

read_thread st defs ;
read_val st defs ;
read_cont st defs

].

Refining those invariants was a lot of work, but given those invariants, the proof of
preservation requires little imagination.

The outline of the proof is the following: first, we define a points_to relation between
two thread identifiers, where a thread points to another if it includes a reference to the
other in it. We prove that this relation is well-founded, which shows that our graph of
threads is acyclic. Next, we prove that when reducing a thread rid, the readback of all
threads indirectly pointed to by rid is unchanged, since their values did not change and
they could not have depended on rid.

We then prove the following statement, that states that for the thread rid, the readback
corresponds to either zero or one beta-reduction from the value it was read back to, as
well as a few additional properties, using a large case analysis and exploiting the full
power of our invariant.

Lemma step_r_beta_hnf :
forall st st2 defs varmap rid t,

defs_ok defs st ->
Forall (fun x => x < st_freename st) varmap ->
NoDup varmap ->
step_r st rid = st2 ->
read_thread st defs varmap rid t ->
same_read_plus st st2 defs rid /\
(forall rid2,

nth_error (st_rthreads st) rid2 = None ->
nth_error (st_rthreads st2) rid2 <> None ->
exists t2 varmap2,

varmap_ok (st_freename st2) varmap2 /\
read_thread st2 defs varmap2 rid2 t2) /\

exists t2,
read_thread st2 defs varmap rid t2 /\
reflc beta_hnf t t2.

Finally, we show that for threads which were indirectly pointing to rid, we have re-
ductions of subterms for their readback, enabling us to prove the preservation theorem,
whose statement is given below.
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Lemma step_r_correct_val :
forall st defs rid varmap v t,

defs_ok defs st -> state_wf st defs ->
read_val st defs varmap v t ->
varmap_ok (st_freename st) varmap ->
exists t2,

read_val (step_r st rid) defs varmap v t2 /\
star beta t t2.

Here, the various hypotheses are simple invariants expressing that there is no conflict
between defined constants and neutral variables introduced when reducing under λ-
abstractions, and also that every thread can meaningfully be read back to a term (thus
bringing all other invariants with them). The conclusion says that if a value can be read
back to a term, it can still be read back after reduction to a term that is a β-reduced
version of the previous term.

11.5. Proving the correctness of convertibility

The other part of the readback is concerned with convertibility threads. For those, the
readback relation is a lot simpler and given below:

Inductive read_cthread st defs : cthread -> bool -> Prop :=
| read_cthread_done :

forall b, read_cthread st defs (cthread_done b) b
| read_cthread_reduce :

forall v1 v2 varmap1 varmap2 b,
(forall t1 t2,

read_val st defs varmap1 v1 t1 ->
read_val st defs varmap2 v2 t2 ->
reflect (convertible (betaiota defs) t1 t2) b) ->

read_cthread st defs (cthread_reduce v1 v2 varmap1 varmap2) b
| read_cthread_or_false :

forall ct1 ct2,
read_cthread st defs ct1 false ->
read_cthread st defs ct2 false ->
read_cthread st defs (cthread_or ct1 ct2) false

| read_cthread_or_true_1 :
forall ct1 ct2,

read_cthread st defs ct1 true ->
read_cthread st defs (cthread_or ct1 ct2) true

| read_cthread_or_true_2 :
forall ct1 ct2,

read_cthread st defs ct2 true ->
read_cthread st defs (cthread_or ct1 ct2) true

116



11.5. Proving the correctness of convertibility

[...]
.

Here, the idea is that the readback of a convertibility thread is a Boolean, which is true
whenever the inputs are convertible and false otherwise. In the case of cthread_done,
the result is already computed and the readback is thus this Boolean, while in the
cthread_reduce case, we say that the readback of the thread is obtained by reading
the terms, and the readback is true if and only if the terms thus read are convertible.
For the case of cthread_or and cthread_and, we cannot simply use Coq’s Boolean con-
nectors bor and band, as with the short-circuiting evaluation, one branch may not have
a readback at all before it is removed by a short-circuiting evaluation. Thus, we specify
them as three different rules, allowing cthread_or to be read back to true even if only
one of the sides is read back to true and the other cannot be read back at all.

The preservation theorem for cthread readback is quite simple to state:

Lemma cthread_red_correct :
forall st defs ct1 ct2 b,

defs_wf defs ->
cthread_wf st defs ct1 ->
cthread_red st ct1 ct2 ->
read_cthread st defs ct2 b ->
read_cthread st defs ct1 b.

Here, defs_wf and cthread_wf express simple well-formedness definitions as before, and
the theorem states that if after reduction, the cthread can be read back to a Boolean
b, then it could be read back before as well. Thus, if after a number of reduction steps,
the thread evaluates to cthread_done b, we obtain that the original thread can be read
back to b as well, meaning that the input terms are convertible or not according to b.

The full statement of the final correctness theorem is thus given below:

Lemma all_correct :
forall defs t1 t2 st b,

defs_wf defs ->
closed_at t1 0 -> closed_at t2 0 ->
dvar_below (length defs) t1 -> dvar_below (length defs) t2 ->
star step (init_conv defs t1 t2) (cthread_done b, st) ->
reflect (convertible (betaiota defs) t1 t2) b.

It expresses that given two closed terms and well-formed definitions, where the instances
of dvar inside the terms only reference existing definitions, if after some steps from the
initial state created from defs, t1 and t2 we obtain a cthread_done b convertibility
thread, then the convertibility of t1 and t2 is indeed expressed by b.

Note that, as we said earlier, this does not guarantee the absence of errors or deadlocks,
and thus that a cthread_done state will be reached. However, it guarantees that once
it is reached, then the result thus obtained is correct.
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11.6. A library for generating induction principles in Coq

We wrote a small library that allows us to generate induction principles, even when
Coq’s own generated induction principles are not strong enough, for instance for the case
of nested recursion. The Ltac tactic language of Coq does not allow access to enough
information to generate them, but its successor Ltac2 does, which is why we used it for
that library, even if the rest of the proof is written in Ltac.

Writing the library did not require any particular insights: we simply generate the induc-
tion hypotheses in a naïve manner from the contents of the different constructors of the
inductive type. However, we apply well-chosen theorems when we encounter arguments
such as list t or Forall P l. In these cases, we apply a previously-defined theorem
to get a stronger induction hypothesis than Coq would be able to produce. One thing
to note is that those theorems need to be closed with Defined. instead of Qed., as the
guardedness check must be able to look under those definitions to see that the induction
hypothesis is indeed used in a positive position.

The core loop for generating the induction hypotheses corresponding to a given argument
of a given constructor looks like the following:

Ltac2 rec constrind_hyp
(v : constr) (inds : constr list) (hrecs : constr list) :=

let t := Std.eval_hnf (Constr.type v) in
match is_ind_prefix_l inds t hrecs with
| Some argshrec =>

let (args, hrec) := argshrec in mk_app (applist hrec args) v
| None =>

lazy_match! t with
| list ?a =>

mk_Forall_proof_smart (Fresh.in_goal @x) a
(fun x => constrind_hyp x inds hrecs) v

| @Forall ?t ?p ?l =>
mk_Forall_impl_smart t p l (fun h => constrind_hyp h inds hrecs) v

| ?a /\ ?b =>
mk_and_proof_smart

(constrind_hyp (mk_app 'proj1_transparent v) inds hrecs)
(constrind_hyp (mk_app 'proj2_transparent v) inds hrecs)

[...]
| _ => 'I
end

end.

As we can see here, the syntax of Ltac2 has a lot of differences with that of Ltac, and can
be very close to a conventional ML-like programming language. In the above code, we
evaluate the type of the argument to its head-normal form, and then continue depending
on what we get:
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• If the type of the argument was the type of the inductive type we are currently
generating an induction principle for (or one of the types defined mutually with it),
we use the induction hypothesis.

• If the type is of some select list of known types (such as list, the Forall type or
conjunction), we use smart constructors for the theorems mentioned above to get
an induction hypothesis as strong as possible.

• Otherwise, we do not know what we can do with this argument and simply generate
the type True for the hypothesis.

As we can seen, the above pattern-matching can be easily extended when adding a
new type such as Forall2, allowing us to generate induction principles very efficiently.
Although we generate very few such induction principles in the actual development shown
before and the library could be replaced by tedious hand-written induction principles, its
help has been invaluable when writing the proof and we needed to modify the definitions,
allowing to experiment a lot more with what precise definitions we needed for the proof
to work.
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In this chapter, we study the question of providing complexity bounds for our machine.
However, due to the undecidable nature of untyped convertibility, the length of the short-
est proof can grow faster than any computable function. Even in a very restricted typed
setting, the simply typed λ-calculus, convertibility is already known to be TOWER-hard
[Sta79], enough to erase even an exponential speedup. Therefore, we would like to provide
a complexity bound depending on the size of a shortest proof of convertibility. However,
defining what a shortest proof means is tricky: do we mean a shortest mathematical
proof in some ambient theory such as ZFC? Do we mean, as in [Con20], the number of
steps to reduce both terms to normal forms and compare the results?

Neither of these notions feels appropriate. Mathematical proofs are significantly too
powerful, and it would be almost impossible to get any relation between the complexity
of our convertibility check and the length of a shortest mathematical proof. On the other
hand, our machine can prove convertibility faster than reducing both terms to normal
forms, and it does not feel right to say that our machine can end up computing a proof
in time that is sublinear of the length of the proof.

For these reasons, we argue that the pertinent notion here is the length of a shortest
proof of a form corresponding to the proofs that can be produced by our machine. In
this case, it means reduction with sharing of reduction steps, and convertibility with the
shortcutting rules when stacks are compared (in the case of non-convertibility), or when
applying the same constant to convertible stacks (in the case of convertibility).

12.1. Reduction structures

To give a proper definition of the length of a proof, we must first specify how reduction
steps are to be counted. We will do that through the notion of reduction structure. The
intuition behind reduction structures is that implementations of λ-calculus reduction use
some form of graph to represent sharing in an implementation of λ-calculus reduction,
but how the sharing is precisely implemented does not matter for our proof of complexity.
Thus, we abstract the details of reduction, and consider a set of possible graphs, which we
will call states, and a set of vertices for each of these graphs, which we will call handles.

A reduction structure is a 5−tuple (R,→, H, read,head), with the following properties:

• R is a set, called the set of states of the structure;

• → is a relation between elements of R, called the reduction relation of the structure;
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• H is a function from states to sets of handles, such that for each r, r′, if r → r′,
then Hr ⊆ H ′

r;

• read, called the readback function of the structure, is a function taking a state r
and a handle h ∈ Hr and returning a λ-term;

• head, the head-taking function of the structure, is a function taking a state r and
a handle h ∈ Hr, and returning one of:

– ⊥;

– λx.h′, in which case read(r, h) = λx.read(r, h′);

– x h′, in which case read(r, h) = x read(r, h′);

– (c h′, h′′), in which case read(r, h) = c read(r, h′), c is a defined constant
expanding to d, and read(r, h′′) ≡β d read(r, h′);

We also require the following properties:

• compatibility of read with β: for all states r, r′ and handles h ∈ Hr, if r → r′, then
read(r, h) ≡β read(r′, h).1

• validity of head : for each r and h ∈ Hr, for each h′ appearing in head(r, h), we
have h′ ∈ Hr;

• → is strongly confluent;

• progression of head : for all r, r′ and h ∈ Hr, if r → r′ and head(r, h) ̸= ⊥, then
head(r′, h) = head(r, h);

• determinism of head : for all r, r′, r′′ and h ∈ Hr such that r →∗ r′ and r →∗ r′′, if
head(r′, h) ̸= ⊥ and head(r′′, h) ̸= ⊥, then head(r′, h) = head(r′′, h).

To give some intuition, handles correspond quite precisely to what were called values in
the Coq proof of chapter 11, and states correspond to the type state. Almost all of the
properties shown here are proved in Coq, except determinism, which is also true only up
to renaming of thread identifiers and free variables in the Coq version.

We will say that handle h is computed in state r if head(r, h) ̸= ⊥.

With the definition of reduction structure in mind, we can give a formal definition of the
length of a proof. For that, we assume a given reduction structure (R,→, H, read,head),
and we will consider a state r, as well as two handles h1, h2 ∈ Hr for which we want to
prove equality or inequality.

A proof of convertibility between read(r, h1) and read(r, h2) then consists in two kinds
of steps: reduction steps, where we replace r with r′ such that r → r′, and convertibility
steps, where we deduce a (non-)convertibility relation from already known such relations.

1We see here that we used ≡β instead of →∗
β . Although we should think of it as →∗

β , ≡β is enough for
the properties we want and far easier to prove.
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Red
r → r′

(r, E)⇝r (r
′, E)

Unfold1
head(r, h1) = (c h′, h′′) (h′′ ?≡ h2) ∈ E

(r, E)⇝c (r, E ∪ {h1 ?≡ h2})

Unfold2
head(r, h2) = (c h′, h′′) (h1

?≡ h′′) ∈ E
(r, E)⇝c (r, E ∪ {h1 ?≡ h2})

Head
E ⊢ head(r, h1)

?≡ head(r, h2)

(r, E)⇝c (r, E ∪ {h1 ?≡ h2})

Abs
(h1

?≡ h2) ∈ E
E ⊢ λx.h1

?≡ λx.h2

VarEq
∀i, (hi ≡ h′i) ∈ E
E ⊢ x h

n ≡ x h′
n

VarNEq1
(hi ̸≡ h′i) ∈ E

E ⊢ x h
n ̸≡ x h′

n

VarNEq2
n ̸= m

E ⊢ x h
n ̸≡ x h′

m

VarNEq3
x ̸= y

E ⊢ x h ̸≡ y h′

VarAbs

E ⊢ x h ̸≡ λy.h′

AbsVar

E ⊢ λx.h ̸≡ y h′

ConstEq
∀i, (hi ≡ h′i) ∈ E

E ⊢ (c h
n
, h′′) ≡ (c h′

n
, h′′′)

Figure 12.1.: Convertibility rules for non-thread values. In the rules, ?≡ means either ≡
or ̸≡.

We start with an initial state (r, ∅) where we are in state r and we have proved no
relations, and we perform the steps shown in Figure 12.1. The proof of convertibility
(resp. non-convertibility) is complete when we have (h1 ≡ h2) ∈ E (resp. (h1 ̸≡ h2) ∈ E).

The first four rules specify how we should compare handles: Red says that we can always
perform a reduction step in the structure, while rules Unfold1 and Unfold2 express
the fact that we can unfold constants on either side. Finally rules Head states that if
both the heads of the handles have been computed, we only need to compare the heads.

The next eight rules specify how heads should be compared: the Var rules specify how
terms where both heads are variables should be compared, while ConstEq expresses
the fact that if both terms are the same constant applied to convertible terms, they are
convertible. The Abs looks simple, but this is because we have conveniently ignored
the question of the renaming of the variable bound by the λ-abstraction, to simplify the
proof.2

2We could however formally justify this with an additional well-bindedness hypothesis on our reduc-
tion structure: formally, each handle h would carry a list L of potentially-bound variables, so that
fv(read(r, h)) ⊆ L, and whenever we have h, h′ with associated lists L,L′ such that head(r, h) con-
tains h′, we either have head(r, h) = λx.h′ and L′ = x :: L, or L = L′. Then, the Abs rule could be
extended to add a mapping between the variables of the lists associated between h1 and h2, and the
VarEq and VarNEq3 rules would check that mapping.
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r step(r, h)

r′ step(r′, h)

≤1

Figure 12.2.: Strong diamond property for step

r · · · r′′

step(r, h) · · · step(r′′, h) · · · r′≤1 ≤1

Figure 12.3.: The strong diamond property implies shortest paths

12.2. Effective reduction structures

While reduction structures are expressive enough to define the notion of the length of a
proof, they lack features for effective computation, since the reduction relation → is only
a relation and is thus not constructive: given r, it is unclear how to compute r′ such that
r → r′.

In order to extend them enough to allow us to specify our algorithm in terms of conversion
structures, we introduce effective reduction structures, which are reduction structures
extended with another operation, step, that given a state r and a handle h ∈ Hr such that
head(r, h) = ⊥, returns a state such that r → step(r, h), and the step r → step(r, h)
is necessary to have on any path from r to a state r′ where head(r′, h) ̸= ⊥. Formally,
we will only ask the fact that if we also have r → r′ for some r′ ̸= step(r, h), then
head(r′, h) = ⊥ and step(r, h) →≤1 step(r′, h). This property is a form of strong
diamond lemma, as depicted in Figure 12.2.

These two conditions together are very strong, implying that if we have a reduction
sequence r →∗ r′, such that head(r′, h) ̸= ⊥ but head(r, h) = ⊥, then there exists a
reduction sequence r → step(r, h) →∗ r′ that is at most as long. To see that, we simply
consider the first step of this sequence of the form r′′ → step(r′′, h), which necessarily
exists since head(r′, h) ̸= ⊥. Then, as shown in Figure 12.3, we can use the second
condition to see that the path r → step(r, h) →∗ step(r′′, h) is at most as long as the
path r →∗ r′′ → step(r′′, h), concluding this proof.

Furthermore, the same proof applies to any set of handles for which we want to compute
all their heads: if we have a set X of handles, such that their heads are not all already
computed, any first step of the form step(r, h) where h ∈ X and head(r, h) = ⊥ is on a
shortest path from r to a state where all the handles of X have been computed. Besides,
thanks to strong confluence, beginning with any step not of this form will either be on
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12.2. Effective reduction structures

a shortest path, or not count at all, but it cannot make the length of the shortest path
from the new state bigger.

Intuitively, the step function defines a critical path of reduction to get to a state where a
given handle is computed. In our Coq or OCaml development, step, for a given handle,
corresponds to making a single step in the thread the handle is currently waiting for,
possibly transitively, while for λ-calculus, it would correspond to head reduction – but
then we need parallel reduction to be able to enforce the strong diamond property.

We require two additional properties of our reduction structure to be able to properly
define our algorithm and guarantee its complexity:

• acyclicity of handles: if we define h′ ≪r h whenever h′ appears in head(r, h), then
the transitive closure of ≪r is a strict pre-order;

• limited growth of handles: for each r, Hr is finite; furthermore, there exists a
constant c such that for all r, r′, if r → r′, then |H ′

r| ≤ |Hr|+ c.

With this, we can see our machine from chapter 9 fits this framework as follows:

• We have a set of reduction threads, each associated with a non-computed handle,
and at most one reduction thread per handle. A reduction thread associated to
h can perform a reduction step by replacing r with step(r, h). Besides, if there
exists a convertibility thread between h1 and h2, there exists a reduction thread
associated to at least one of h1 and h2 if they are not both already computed.

• We have a set of convertibility threads, each between a pair of two handles, and no
two threads corresponding to the same pair. These threads can perform a convert-
ibility step if both of their handles have been computed, and will possibly create
other convertibility threads using the different logic connectors at our disposal so
that they cover all possible cases shown in Figure 12.1, as we have shown before.

• We schedule all those threads in a round-robin manner, and stop as soon as we
have found a proof of convertibility or non-convertibility of our initial problem.

• The constant c corresponds to the maximum of 1 and the maximal arity of a
constructor in the initial terms.

Notice how, in this definition, we did not talk about active threads at all: this is because
we consider an inactive thread like it did not exist at all. In fact, the only rules that we
have are that there must be threads for parts that are needed for a potential proof; but
we have no constraint on having only necessary threads running, as we simply bound the
number of threads globally using the number of handles.

Let us now prove a complexity bound on our machine depending on the size of any given
proof of (non-)convertibility between h1 and h2 in our model. Suppose this proof uses
nr reduction steps, and nc convertibility steps, for a total of n steps.

If we could choose optimally at each step which thread is executed, our machine could
conclude in at most n steps as well. For this, we would just to execute the convertibility
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steps in the same order as in the proof; and for the reduction steps, we notice that if we
need the head of a handle h, we necessarily have a reduction thread allowing us to use a
reduction step r → step(r, h), which exists on a shortest path of reduction to compute
the heads of all the handles we need, as noted before.

Without choosing which thread is executed at each step, we can still ensure that our
machine concludes after n rounds of executing the threads has been done, since spuri-
ous reduction steps cannot increase the number of reduction steps needed other than
themselves, and spurious convertibility steps have no incidence on the rest other than
increasing the number of threads.

Thus, we only need to bound the number of threads to get a complexity bound. This is
easily done: since performing a single step of reduction can only create up to c handles,
if we consider all the reductions happening when we execute all the threads in a single
round, if there were nh handles before, there can be at most (c+1)nh handles afterwards.
As a consequence, when we have made k rounds, there can be at most O((c + 1)k)
handles and thus reduction threads, and at most O((c + 1)2k) convertibility threads.
Since executing each reduction or convertibility step takes time O(1), and we will find a
proof after at most n rounds, the total time taken by the machine is at most O((c+1)2n).
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13.1. Methodology

For experimental evaluation, we relied on our OCaml implementation of the convertibil-
ity checker, which corresponds to the version verified in Coq in chapter 11, extended
with fixpoints and the handling of active threads. Variables in the input terms were
represented by the type string, which comes with additional costs compared to Coq’s
internal de Bruijn indices. On the Coq side, we instrumented Coq’s convertibility checker
so that it prints the time taken (this is much more precise than just relying on Coq’s
Time command, which also accounts for other aspects such as typechecking). We used
Coq 8.15.2, extended with these changes to the convertibility checker. Moreover, both
Coq and our implementation were compiled using OCaml 4.12.1, and the experiments
were made on a laptop with an 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz CPU
and 2x 16GiB SODIMM DDR4 Synchronous 3200 MHz (0.3 ns) RAM, running Linux
5.15.74 with NixOS 22.05.

We also compared an extended version of our convertibility checker as described in chap-
ter 12, which performs sharing of convertibility tests and tries unfolding both sides inde-
pendently in a convertibility test, and therefore has a guaranteed complexity bound.

13.2. Testcases

The different testcases we used are described and commented below, while the precise
amount of time taken is described in Figure 13.1. On all the testcases, the timings remain
quite small: we often hit stack overflows with larger inputs, and we can already spot the
exponential behaviours with these inputs.

To begin, we consider the expansion of definitions:

Fixpoint exp2 n :=
match n with
| O => 1
| S n => 2 * exp2 n
end.

Definition zero (n : nat) := 0.
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Testcase Coq Ours Ours2
test1 3e-5 5e-5 6e-3
test1c 1e-5 5e-5 6e-5
test2 0.14 5e-6 2e-5
test3 9e-5 2e-4 5e-5
test4 0.018 0.013 9e-5

Testcase Coq Ours Ours2
test5 4e-6 6e-6 8e-6
test6 0.61 1e-6 8e-6
test7 3e-5 7e-5 2e-4
test8 0.078 5e-5 2e-4
test9 2e-5 6e-5/0.18∗ 0.15

Figure 13.1.: Timings, in seconds, for the examples of convertibility problems given in
the text for both Coq and both our OCaml implementations. See the main text for the
explanation on the two results given for test9 with our tool.

(* fast *)
Definition test1 :

exp2 15 = exp2 (14 + 1)
:= eq_refl.
(* slow *)
Definition test2 :

zero (exp2 15) = zero (exp2 16)
:= eq_refl.

Here, our testcases are test1 and test2, whose definitions generate a convertibility
test between the two sides of the equality. When using Coq, the definition of test1 is
fast, while the definition of test2 is slow. Indeed, in both cases, Coq tries to prove the
convertibility of the arguments before unfolding the definition. While this is a good move
for test1 as it allows it to prove convertibility without expanding exp2, in the case of
test2, it tries and fails to prove the convertibility of exp2 15 and exp2 16, costing a lot
of work, while expanding zero would have proved convertibility immediately. We also
studied a version of test1 using Church integers instead, shown in the results as test1c.

Here, our own convertibility checker gets the best of both worlds by doing the work in
parallel, and both the convertibility checks for test1 and test2 are fast. Our guaranteed-
complexity checker does a bit worse on test1 than on test1c, which we experimentally
measured at O(n2.8) complexity compared to O(n) when using n instead of the constant
15 in the example. This is caused by the large amount of unfolding opportunities in the
branch where we unfold exp2, causing an explosion in the number of threads. Solving
this issue remains future work, discussed in Section 14.2.1.

Next, we consider what happens with terms that have a size exponential in the size of
their memory representation, because there is a lot of sharing inside the term itself.

Inductive tree :=
| L : tree
| N : tree -> tree -> tree.
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Fixpoint explode_share n t :=
match n with
| O => t
| S n => explode_share n (N t t)
end.

Fixpoint left_depth t :=
match t with
| L => 0
| N t1 t2 => S (left_depth t1)
end.

Fixpoint left_depth2 t :=
match t with
| L => 0
| N t1 t2 => left_depth2 t1 + 1
end.

(* fast *)
Definition test3 :

left_depth (explode_share 15 L) = left_depth2 (explode_share 15 L)
:= eq_refl.

(* slow *)
Definition test4 :

explode_share 15 L = explode_share 14 (N L L)
:= eq_refl.

Here, explode_share takes an argument n and a tree t and generates a tree with 2n

copies of t. However, this only takes time linear in n to evaluate, as these instances are
shared. The definitions left_depth and left_depth2 both compute the length of the
leftmost branch of t, in linear time of the result for left_depth, and quadratic time for
left_depth2.

When defining test3, the convertibility test is fast both in Coq and with our con-
vertibility checker because terms are shared, so the computation of both sides takes
only linear time. However, Coq is slow when defining test4, because after expanding
explode_share, it has to prove the convertibility of the exact same terms multiple times.
For the same reason, only the extended version of our convertibility check, which does
sharing of convertibility tests, is fast.

Another interesting test is about the order in which the arguments of constructors (or
identical defined constants) are compared. For this, we consider two very similar tests,
given below.
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(* fast *)
Fail Definition test5 :

(exp2 15, false) = (exp2 16, true)
:= eq_refl.

(* slow *)
Fail Definition test6 :

(false, exp2 15) = (true, exp2 16)
:= eq_refl.

Here, with Coq, the first test of non-convertibility is almost instantaneous: Coq starts by
comparing true and false, since Coq evaluates such arguments right-to-left. They are
different, so the test stops immediately. However, the second test is a lot slower: indeed,
Coq starts by comparing exp2 15 and exp2 16, which fails, but after a long time.

With our convertibility checker, both tests are as fast as one another: we test the con-
vertibility of the arguments in parallel, so we immediately detect that false and true
are not convertible, and return this result.

Another particularity of Coq is that once a constant is unfolded, it stays unfolded for
future tests, preventing us from benefiting from the optimisation with folded constant.
In the following tests, we can see the problem that this poses:

Definition is_zero n :=
match n with
| O => true
| S n => false
end.

(* fast *)
Definition test7pair n := (is_zero n, n).
Definition test7 :

test7pair (exp2 15) = (false, exp2 15)
:= eq_refl.

(* slow *)
Definition test8pair n := (n, is_zero n).
Definition test8 :

test8pair (exp2 15) = (exp2 15, false)
:= eq_refl.

Again, both tests are the same except for the order of arguments. When defining test7,
Coq first starts by comparing exp2 15 and exp2 15, which is almost instantaneous
thanks to the folded constant optimisation. Then, it compares is_zero (exp2 15) with
false, which takes only linear time, thanks to Coq’s laziness.
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However, when defining test8, Coq first starts by comparing is_zero (exp2 15) with
false, forcing it to unfold exp2 to prove the convertibility. Once this is done, it has
to compare exp2 15 with a version of exp2 15 which is already partially computed and
where exp2 has been unfolded. At this point, it has no way but to expand exp2 on the
other side, and the time taken is exponential.

With our convertibility checker, both tests are fast. Indeed, when we unfold a constant,
we also keep the original folded value, allowing us to still benefit from the folded constant
optimisation if we encounter it again.

Of course, this comparison wouldn’t be honest if we didn’t show the shortcomings of our
own convertibility checker as well. Consider the following example:

Definition f0 (n : nat) := n.
Definition f1 n := f0 (f0 n).
Definition f2 n := f1 (f1 n).
Definition f3 n := f2 (f2 n).
Definition f4 n := f3 (f3 n).
Definition test9 :

f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (
f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (
f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 0
)))))))))))))))))))))))))))))

= f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (
f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (
f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 (f4 0
)))))))))))))))))))))))))))))

:= eq_refl.

On this example, Coq is almost instantaneous by applying the folded constant optimisa-
tion repeatedly, but since we explore both what happens when unfolding and when not
unfolding, our convertibility checker is a lot slower. However, this depends heavily on
the unfolding order of constants: if we choose to always unfold the older constant first
when there are two different head constants, we obtain a result quite fast, as when we
unfold f4 on one side, then we will repeatedly unfold successively f3, f2, f1 and f0 on
that side until this side has only f4, preventing the folded constant optimisation from
applying and spawning new threads until that point. This will in turn severely limit the
number of total convertibility threads that are created and thus allowing the code to
run quite fast, albeit still slower than Coq. On the other hand, if we always unfold the
newer constant first (which is often the best choice in Coq), when we unfold f4 on one
side, we will match this by unfolding f4 on the other side next, making f3 appear as
the head constant on both sides, making the folded constant optimisation apply again,
and so on with f2, f1 and f0, creating in total a very large number of convertibility
threads, and thus making the code run very slowly. Likewise, the extended version of
our convertibility check, which does not use heuristics but always unfolds both sides in
parallel is slow on this example.
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However, such examples seem to be quite pathological, and we think they should not
happen in practice. Besides, we strongly suspect that, once we implement sharing of
equality proofs, we will have a guaranteed complexity of our convertibility test in terms
of the shortest existing convertibility proof, which looks like a desirable property that
Coq does not have.
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14.1. Related work

14.1.1. The complexity of convertibility

In [Con20], Condoluci studies the complexity of convertibility in the pure λ-calculus.
In it, she proves that if it takes n steps to reduce t1 and t2 to normal forms, then
the complexity of determining whether t1 and t2 are convertible is O((|t1| + |t2|)n), by
reducing both terms to normal form (with sharing) using a well-chosen abstract machine,
followed by a linear test to check equality of the normal forms in this representation.1

Here, n is the number of steps needed to compute the normal form using strong call-
by-value, but strong call-by-need (for instance using the strategy we outlined in the first
part of this thesis) would work just as well and yield the same bounds.2 This is a very
good complexity, perhaps even the optimal one if we only allow ourselves to depend on
those two quantities. Because it is restricted to the pure λ-calculus, it cannot exploit the
folded constant optimisation, which is crucial to get good performance in Coq.

14.1.2. Verification of the Coq kernel

The MetaCoq project [Soz+20] contains a formal verification of the Coq kernel, including
its convertibility checker. It is an impressive Coq development, which even includes the
formalisation of cofixpoints and universes (with cumulativity) which we have not studied
at all. What is formalised is the strategy we showed at the beginning of chapter 9,
including termination, but only the soundness has been proved: if the strategy specified
by the proof says that t1 and t2 are convertible, then they are indeed convertible, but if it
answers they are not convertible, there is no proof they are indeed not convertible. Our
own development does not include a proof of termination, nor does it handle the more
complex features of Coq. However, we proved both soundness and completeness, and the
strategy that is verified is more efficient in numerous cases, as we saw in chapter 13.

1This second step is in itself not trivial: a naïve test using an union-find data structure would incur an
additional O(α((|t1|+ |t2|)n)) cost.

2Actually, n would likely be lower, but the constant factor higher, as is frequent with call-by-need
compared to call-by-value.

133



14. Future and related work

14.2. Future work

14.2.1. Improved scheduling of threads

While our complexity proof shows a bound of O(rnr+nc) running time (for some constant
r > 1) to prove the convertibility when the shortest convertibility proof has nr reduction
steps and nc convertibility steps, we would like to improve this bound to something
linear in nr. With the version of the machine we described, it is unfortunately not the
case, since convertibility steps on the non-branching case can exponentially increase the
number of threads, diluting the useful work. We expect we could improve this by giving
a time budget to each active thread, so that the sum of all these time budgets is 1,
and dividing the actual time allocated to each thread to be proportional to the time
budget of the given thread. In that case, we believe we could get a complexity bound
of O((nr + nc1)r

nc2 ), where nc1 is the number of non-branching convertibility steps (the
steps in the shortest proof where only once convertibility rule can be applied with the
given heads), while nc2 is the number of branching convertibility steps. This would make
our convertibility check competitive with Coq in the test1 case, instead of having a
cubic slowdown. However, we have not proved or implemented any part of this yet.

14.2.2. Proving the absence of deadlocks and errors as well as termination

Our Coq formalisation does not try to prove the absence of deadlocks and errors in the
machine, simply using dummy transitions to the same state, making the term effectively
stuck. Proving their absence remains future work, and while it seems like the invariants
needed should not be too complicated, there still is a risk as long as the proof is not
written that we have missed an invariant. If an invariant is missing, it would in this case
most likely be that we need full β-reduction instead of simply β-equivalence between a
λ-abstraction and its reduced form.

Proving termination (assuming termination of the input term) is another complex
problem, and this one would very probably need to prove β-equivalence between a λ-
abstraction and its reduced form. While we are very confident that this holds, the proof
would likely be extremely complex: a previous version for strong call-by-need small-step
reduction semantics took about the same proof size and effort as the either our big-step
semantics for strong call-by-need in the previous part, or the convertibility test of this
part, while only handling the base lambda-calculus (without constructors, matching or
defined constants), and being very complex to scale: the invariant depended on several
readback functions, with the same reference to a lazy value being sometimes expanded
to the definition of the lazy value and sometimes not, even in the same term! Thus,
proving β-reduction between a λ-abstraction and its reduced form in our convertibility
test remains a substantial amount of work, either practical by adapting the existing
proof, or theoretical by finding a simpler proof, which we have not begun yet.

134



14.2. Future work

14.2.3. Encoding as concurrent programming

We have the intuition that our semantics might be amenable to encoding in a concurrent
programming language, whose thread/process abstraction would be used instead of our
home-made threads and scheduling. Since we took care of enforcing the subterm property
in our machine, it might even be possible to compile our input problem into a program
for that language, which we can then compile and run to get the answer to the problem
we were considering. We could also write an interpreter to avoid the initial cost of
compilation, but it is likely that for small problems, our own implementation would be
at an advantage given its simplicity, and for large problems, the initial cost of compilation
would be small compared to the cost of running the program. We would then be able to
benefit from the capabilities of the host language for running on multiple cores or even
computing nodes, as a true parallel proof search.

The host language would however need to satisfy several criteria rarely seen together to
be able to encode our machine. Indeed, we need process creation to be an extremely
lightweight operation, since a new thread is created for each β-reduction. Call-by-need
is already known to be less efficient than call-by-value, but process creation is always
significantly more expensive, even if the new process starts as inactive: the smallest size
of an Erlang process, themselves extremely small, is already in the order of 300 bytes,
far larger than a simple thunk. We would also need other processes to pause and resume
a running process, a capability seldom found in concurrent languages.

In it unclear whether it would be worth pursuing this further, however. In practice, con-
vertibility problems are quite small, requiring either only small amounts of computation,
or large amounts of reduction but where the actual terms being compared are quite small
(the classic example being proofs by reflection where the only amount of convertibility
needed is between true and a term that evaluates to true after a lot of computation).
Besides, interactive theorem provers are supposed to be interactive, in a relatively tight
feedback loop between the user and the tool, meaning that problems large enough so to
be worth the cost of distributed computing are unlikely to arise in practice.

14.2.4. Producing and replaying proof traces

Our parallel machine was an answer to the initial remark that we would need an oracle to
know whether we should unfold the definitions or compare the arguments when encoun-
tering a problem of the form f t1

?≡ f t2. However, once we have proved convertibility or
non-convertibility with our machine, we know exactly what we need to do to find again
the proof we initially found. Thus, we could extend our convertibility checker to record
such traces, using them afterwards in a sequential checker that would verify the proof a
lot faster in O(r) time, while at the same time, due to its sequential nature, being a lot
easier to formally verify and trust, and probably with a smaller constant factor as well.

Since interactive theorem provers such as Coq spend a lot of time replaying proofs (either
when running an independent checker on the proofs, or when a user performs an unrelated
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change in the code and the proof needs to be verified again), it would likely be useful to be
able to extract the proof trace and use it as an oracle to consult on the various decisions
about unfolding (or about which argument to compare in cases of non-convertibility),
allowing us to consistently outperform Coq.
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Conclusions

In this thesis, we studied a simple and efficient strong call-by-need semantics, as well as a
convertibility checker that uses parallelism to search efficiently for a proof of convertibility
or non-convertibility. With both the strong call-by-need semantics and the convertibility
checker being verified in Coq, we can put trust in them in spite of their complexity, and
perhaps, in the more distant future, integrate them into the Coq code base.

Such a goal would require extending at least the theory (and, preferably for trust, the
proofs) with all other features that Coq supports and that we do not: cofixpoints, uni-
verses and cumulativity, as well as newer features such as SProp.

A perhaps more realistic short-term goal would be to turn our checker into an untrusted
proof producer, producing a trace that would then be used by Coq to check convertibility;
it is likely this would require very limited changes to the current convertibility checker
used in Coq.

Independently from these practical matters, our work yields the first convertibility checker
that we know of that has worst-case complexity bounds depending only on the size of
the smallest proof, with realistic proof rules faster than just reducing to normal form.

While work remains to produce a formal proof of complexity or termination, we believe
that specifying, formalising and proving the machine was the largest and most interesting
part of the work. With it done, we have a framework to use for the remaining points,
which we think will only require small adaptations of the existing proof.

We hope our work will lead others to think about worst-case complexity of the convert-
ibility checkers in use within their tools instead of relying on heuristics that can go wrong
and leaving the user with bad experiences where seemingly simple problems take a very
long time.

We also hope it will help shift the vision of convertibility from a simple computation
problem to something closer to a proof search, opening up new possibilities for proof
rules and search strategies able to use them efficiently, perhaps exploiting injectivity of
some functions or analysing which arguments of functions are required.
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