
Chamelon : A Delta-Debugger for OCaml

Milla Valnet1,2,3(B), Nathanaëlle Courant3, Guillaume Bury3,
Pierre Chambart3, and Vincent Laviron3

1 École Normale Supérieure, Université PSL, 75005 Paris, France
milla.valnet@lip6.fr

2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
3 OCamlPro, 75014 Paris, France

Abstract. Tools that manipulate OCaml code can sometimes fail even
on correct programs. Identifying and understanding the cause of the
error usually involves manually reducing the size of the program, so as
to obtain a shorter program causing the same error—a long, sometimes
complex and rarely interesting task. Our work consists in automating
this task using a minimiser, or delta-debugger. To do so, we propose a
list of unitary heuristics, i.e. small-scale reductions, applied through a
dichotomy-based state-of-the-art algorithm. These proposals are imple-
mented in the free Chamelon tool. Although designed to assist the devel-
opment of an OCaml compiler, Chamelon can be adapted to all kinds of
projects that manipulate OCaml code. It can analyse multifile projects
and efficiently minimise real-world programs, reducing their size by one
to several orders of magnitude. It is currently used to assist the industrial
development of the flambda2 optimising compiler.

1 Introduction

Program errors sometimes occur oten large inputs, of hundreds or even thousands
of lines. Identifying and isolating the error is often a long and tedious task, which
generally involves manually minimising the size of the input as much as possible.
The aim of a minimiser is to automate this work.

Sometimes called delta-debugging, this idea was developed in 1999 by
Andreas Zeller [11] in order to isolate the cause of a program error by iteratively
applying simplifications. It is defined as a methodology reducing a problem while
preserving a certain property—here, the error. The tool thus does not eliminate
the error, but on the contrary points to it.

This method is already used for languages such as C, with C-reduce [1],
SMT-lib [6], or via implementations of Zeller’s original work [11]. Nonetheless,
the problem remains well studied. Zeller worked with Hildebrandt [10] to identify
the inputs and interactions that cause programs’ failure, using Mozilla browser
user inputs as case study, and then demonstrated with Cleve [3] that delta-
debugging works just as well for identifying errors due to the code itself as
to its parameters. Seeing any debugging tasks as special cases of minimisation
problems, he uses this method with Choi [2] for thread scheduling failures, and
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 76–83, 2025.
https://doi.org/10.1007/978-3-031-71177-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_6

Chamelon : A Delta-Debugger for Ocaml 77

with Cleve [4] to identify which variables and at which execution step the error
occurs. Finally, Leitner et al. combine this approach with slicing to reduce the
size of failure cases in random test generation. Some also improved the state of
the art with machine learning [5], probabilistic algorithms [9], etc.

In OCaml, however, the existing debugging tools are limited to type errors [7].
This project therefore proposes the first general-purpose minimiser for OCaml
code, Chamelon. Although initially designed to assist an OCaml compiler devel-
opment in the industry, such a tool may prove useful for other projects using or
manipulating OCaml code. This work makes the following contributions:

• a list of OCaml-specific minimisation heuristics;
• combined with a state-of-the-art technique to perform dichotomy-based min-

imisations;
• an OCaml implementation supporting multi-file projects and runtime errors

available as open-source software;
• with a modular design to support the development of various kinds of OCaml

projects.

Outline. Sect. 2 presents the tool usage. Section 3 explains the unitary heuristics
proposed to minimise the program, while Sect. 4 explains how they are combined.
Section 5 shows extensions of this work.

2 Tool Usage

2.1 Development Context

The tool Chamelon is a delta-debugger for OCaml programs, available as open-
source software on GitHub1. Earlier results on Chamelon were presented in
French [8]. It was originally designed to support the development of the flambda2
optimising compiler2, developed by OCamlPro and used in particular by Jane
Street. Indeed, when flambda2 failed on programs correct according to the stan-
dard compiler, identifying the error cause in flambda2 was not always easy.
However, Chamelon is built in a modular way, reducing a program size while
ensuring an user-given condition, and can be used in various context.

2.2 Usage

chamelon input -c command -e error

To use chamelon, all we need to do is giving it an input file, a command
to execute and an error, that is, the string we want to find in the command’s
standard output. chamelon then prints a log of applied transformations in the
standard output, and when done, the output is a minimised version of the input,
1 https://github.com/Ekdohibs/chamelon.
2 https://github.com/ocaml-flambda/flambda-backend.

https://github.com/Ekdohibs/chamelon
https://github.com/ocaml-flambda/flambda-backend

78 M. Valnet et al.

such that the command output still contains the error. To minimise a set of files,
we only need to provide the command with several inputs. This way, Chamelon
can be used in different settings.

A simple real-world use case is available online3. By following instructions in
README-CHAMELON.md, we can make Chamelon reduce the size of an input file
trigerring a Fatal error in flambda2, to help understand the origin of the error.

2.3 Experimental Results

The tool is currently used daily at OCamlPro to help flambda2 development for
almost a year. It gave results on real cases of failure, significantly reducing the
output program size. Among the experimental results, it was able to minimise a
650-lines program4 that failed to compile into a program of just 6 lines causing
the same error, identifying a problem in the optimisation of pattern matching5:

1 let offset ~byte_order byte_n =

2 match byte_order with | `Little_endian -> 0 | `Big_endian -> byte_n

3 let pack_unsigned_16 ~byte_order =

4 __ignore__ ((offset) ~byte_order 0);

5 __ignore__ ((__dummy__ ()) ((offset) ~byte_order 1));

6 __dummy__ ()

We also tested the minimiser on larger programs. For example, given a 3842-
lines program on which the compiler was failing, the minimiser reduced it to 22
lines, in around thirty minutes on an average laptop. Often, the output can still
be minimised by hand. However, the tool automates a large part of the work.
Finally, in a multi-file framework, the minimiser is also able to merge or delete
files, resulting in a minimised copy of the project that triggered the error.

Note that reducing the size of the program is not the only interesting action
of the minimiser. Indeed, when a simplification is not done, it means that it
removed the error, which can therefore be exploited. We not only benefit from
the size-reducing, but also from the minimality of the program with regard to
the heuristics.

3 Heuristics

The concept of the approach is to compose and combine different unitary heuris-
tics, applying each of them as much as possible before trying the next. We present
here the different heuristics implemented to minimise an OCaml program. It
should be noted that, having initially targeted compilation problems, our app-
roach aims much more at identifying errors caused by a certain code structure
than by a certain semantics or execution: this therefore guides our choice of
heuristics.
3 https://github.com/Ekdohibs/flambda-backend/tree/chamelon-demo.
4

https://github.com/janestreet/core kernel/blob/master/binary packing/src/binary packing.ml.
5 fixed by https://github.com/ocaml-flambda/flambda-backend/pull/1073.

https://github.com/Ekdohibs/flambda-backend/tree/chamelon-demo
https://github.com/janestreet/core_kernel/blob/master/binary_packing/src/binary_packing.ml
https://github.com/ocaml-flambda/flambda-backend/pull/1073

Chamelon : A Delta-Debugger for Ocaml 79

3.1 Suppress Definitions

Delete definitions starting from the end. The first simple heuristics consists
in deleting all definitions—of variables, types, modules, etc.—starting from
the end. It aims at removing the code located after error’s cause, on which
the error does not depend.

Replace expressions by dummy values. When definitions cannot simply
be removed, we try to replace them with the simplest possible values. The
challenge is then to determine which trivial value we want to replace our
expression with while respecting type constraint. For ground types, we simply
replace expressions of type int by 0, those of type float by 0.0, those of type
char by ’0’, those of type string by "" and those of type unit by (). For
the other types, we used:

external __dummy__ : unit -> 'a = "%opaque"

Here, dummy () is of type ’a, and can therefore replace an expression of
any type. It is based on the external primitive opaque: when compiled, it is
considered as a function returning an arbitrary value—here, a function of type
unit -> ’a because of the annotation. However, at runtime, it behaves like
the identity function: for this reason, the value of dummy () is (), causing
a type error. When targetting compilation failures, this is not a limitation.
However, to generalize the tool’s use cases, this problem will be adressed in
Sect. 5.

3.2 Simplify Abstract Data Types

Suppress constructors from ADTs. A first heuristic consists in deleting a
constructor Cons from an algebraic data type. This involves propagating this
deletion of in the code: expressions Cons(e1, . . . , en) are replaced by dummy
(), and patterns using Cons are simply removed.

Delete fields from record types or constructors. When deleting an entire
constructor is not possible, we instead delete its fields. After deleting its ith
field’s definition, we go through the code to delete the ith field in Cons(e1,..
,en) expressions, and the ith sub-pattern in each Cons(p1,..,pn) pattern—
replacing variables bound by pi with dummy ().

3.3 Simplify Code

Modify attributes. We remove attributes of functions, modules, etc. from
the program to make it less verbose. However, local [never|always] and
inline [never|always] to functions can also provide valuable information
about the origin of the failure, forcing the compiler’s inlining strategies.

Inline functions. Inlining a function, i.e. replacing it with its definition at call
site, can lead to additional simplifications.

80 M. Valnet et al.

Flatten modules. Flattening modules means removing variables defini-
tions from module Name = struct ... end block. To avoid name conflicts
between variables from the module and variables defined in the program, we
chose to precede the name of the variable by the name of the origin module
: this change is then propagated throughout the program.

3.4 Remove Simplification Artifacts

Situations that would not or only rarely appear in real user code may appear
after applying the above heuristics:

Remove dead code. For each variable, module and type, we go, and when not
used, we simply delete their definition.

Simplify pattern matching. When the match contains a unique one-variable
pattern, we replace match e1 with x -> e2 by e2 in which x has been tex-
tually substituted by e1.

Sequentialize function calls. After simplifications, we may obtain a function
application of the form (dummy ()) e1 ... en. We sequentialise its by
evaluating each argument separately, to get non-nested expressions. We use
the primitive external __ignore__ : 'a -> unit = "%ignore" . We then
transform (dummy ()) e1 ... en into:
ignore e1 ; ... ; ignore en ; dummy ()

Simplify rec and unused arguments. After replacing expressions and defi-
nitions by dummmy, arguments of a function may no longer be used. We then
delete them and propagate their deletion to all of the function’s call sites.
When the ith argument of the function f is deleted, all occurrences of f are
replaced by (fun x1 ... xn -> f x1 ... xi-1 xi+1 ... xn). Similarly,
when the function is no longer recursive, we remove the keyword rec.

Simplify sequences. Expressions of the form (); e are replaced by e.

4 The Iteration

A unitary heuristic can possibly be applied at different points in a program: when
trying to delete a constructor from an ADT, many constructors are possible
candidates. We call ”n-th program point” the n-th position, while reading the
program’s AST, where it can be performed. When trying to apply it at a program
point—e.g. deleting one of those constructors, there are three possible cases:

– This simplification does not remove the error: the program has been reduced!
– This simplification removes the error: we do not want to apply it.
– The index of the point is greater than that of the last modifiable point.

We iterate this way: we take as input the program, a heuristic, and a position.
We then attempt to apply the heuristics at this position. If minimisation is
possible, we iterate over the new program without incrementing the position,
since after simplifying the nth point, the next modifiable point is the new nth.
If minimisation is not possible, the next position is examined. Finally, if the
position is too large, the whole program was examined, so we return.

Chamelon : A Delta-Debugger for Ocaml 81

Dichotomic Optimisation. In Chamelon, this loop is otpimized by dichotomy,
as initially suggested by Keller [11], by no longer trying to minimise locations
one by one, but rather a set of locations of length 2n. This method improves
efficiency by a factor of 10 on real programs of a few thousand lines.

Heuristics Order. The application order of the different heuristics was deter-
mined experimentally, on a small sample of tests, mainly by finishing with the
heuristics removing the simplification artefacts. For more robust and efficient
scheduling, further research and testing could prove useful.

5 Extensions

Multifiles. In real use cases, a project is made of multiple interdependant files.
We have therefore adapted Chamelon to work on such projects:

• First, we try deleting as many files as possible, in the order of dependencies;
• Then, we try merging as much files as possible;
• Finally, each remaining file is minimised with previous methods.

Note that every object modification must be propagated to all dependencies.
For example, if an argument of a function f is deleted, it must be deleted at each
f call sites, in each of the program’s dependencies. To use Chamelon in multifile
mode, we need to provide it with the list of files to minimise, in dependencies
order—which can be given by ocamldep tool.

Runtime. The work presented so far focused on compile-time errors. However,
errors may also occur at runtime. To handle this, we replaced the dummy
values, causing runtime errors, using an algorithm which, given an input type,
generates an expression of the same type, as concise as possible.

Compatibility. The implementation uses OCaml compiler libraries to manipulate
abstract syntax trees. A compatibility library is implemented, so that changing
of compiler version only requires some information about the new AST.

Adding Heuristics. Implementing a new heuristics is low-cost: we only need to
write the transformation through existing mappers function for OCaml AST.

6 Conclusion

In the future, an interesting extension would be to make the Chamelon minimiser
compatible with dune—the OCaml build system. Finally, through its use in
real-world examples, we aim at improving existing heuristics and finding new
ones, so as to make it more robust, more efficient and faster. In the end, this
work combines various minimisation heuristics with a state-of-the-art iteration
technique and a modular design, offering the first delta-debugger for and in
OCaml, available for its community!

Artifact. The artifact associated to this paper and demonstrating the use of Chamelon

on different programs is available at https://doi.org/10.5281/zenodo.12520654.

https://doi.org/10.5281/zenodo.12520654

82 M. Valnet et al.

References

1. C-reduce project. https://github.com/csmith-project/creduce
2. Choi, J.D., Zeller, A.: Isolating failure-inducing thread schedules. In: Proceedings

of the 2002 ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 210–220 (2002)

3. Cleve, H., Zeller, A.: Finding failure causes through automated testing. In: Ducassé,
M. (ed.) Proceedings of the Fourth International Workshop on Automated Debug-
ging, AADEBUG 2000, Munich, Germany, 28–30 August 2000 (2000). https://arxiv.
org/abs/cs/0012009

4. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of the
27th International Conference on Software Engineering, pp. 342–351 (2005)

5. Heo, K., Lee, W., Pashakhanloo, P., Naik, M.: Effective program debloating via
reinforcement learning. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, pp. 380–394. Association for
Computing Machinery, New York (2018). https://doi.org/10.1145/3243734.3243838

6. Kremer, G., Niemetz, A., Preiner, M.: ddSMT 2.0: better delta debugging for the
SMT-LIBv2 Language and friends. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12760, pp. 231–242. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81688-9 11

7. Sharrad, J., Chitil, O.: Refining the delta debugging of type errors. In: Proceed-
ings of the 33rd Symposium on Implementation and Application of Functional
Languages, IFL 2021, pp. 10–19. Association for Computing Machinery, New York
(2022). https://doi.org/10.1145/3544885.3544888

8. Valnet, M., Courant, N., Bury, G., Chambart, P., Laviron, V.: Chamelon: un min-
imiseur pour et en ocaml. In: 35es Journées Francophones des Langages Applicatifs
(JFLA 2024) (2024)

9. Wang, G., Shen, R., Chen, J., Xiong, Y., Zhang, L.: Probabilistic delta debug-
ging. In: Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2021, pp. 881–892. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3468264.3468625

10. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002). https://doi.org/10.1109/32.988498

11. Zeller, A.: Yesterday, my program worked. today, it does not. why? SIGSOFT
Softw. Eng. Notes 24(6), 253–267 (1999). https://doi.org/10.1145/318774.318946

https://github.com/csmith-project/creduce
https://arxiv.org/abs/cs/0012009
https://arxiv.org/abs/cs/0012009
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1145/3544885.3544888
https://doi.org/10.1145/3468264.3468625
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/318774.318946

Chamelon : A Delta-Debugger for Ocaml 83

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Chamelon : A Delta-Debugger for OCaml
	1 Introduction
	2 Tool Usage
	2.1 Development Context
	2.2 Usage
	2.3 Experimental Results

	3 Heuristics
	3.1 Suppress Definitions
	3.2 Simplify Abstract Data Types
	3.3 Simplify Code
	3.4 Remove Simplification Artifacts

	4 The Iteration
	5 Extensions
	6 Conclusion
	References

