
Camlboot: debootstrapping
the OCaml compiler

Nathanaëlle Courant (OCamlPro, Inria)
Julien Lepiller (Yale University)

Gabriel Scherer (Inria)

Ten Years of Guix – 16 September 2022

Camlboot: debootstrapping the OCaml compiler 1/20



About debootstrapping

The architecture of Camlboot

Interpreting OCaml

The MiniML language and compiler

Results

Camlboot: debootstrapping the OCaml compiler 1/20



What is debootstrapping?

▶ Source file: preferred form for human editing and
understanding

▶ Self-bootstrapping a compiler: compiling it with itself
=⇒ Need (non-source) binaries of the compiler to build the
compiler

▶ Debootstrapping a compiler: building a compiler without
using its self-bootstrapped binaries

Camlboot: debootstrapping the OCaml compiler 2/20



Why debootstrap? (1/4)

Trusting trust attack: bugs (or malicious code) can reproduce
themselves through bootstrap binaries:

▶ some bugs seen in the wild, rarely reported,

▶ proofs of concept in Rust and Go,

▶ Induc virus: reproduces itself through Delphi compilers,
discovered in the the wild in 2009, fortunately harmless!

Camlboot: debootstrapping the OCaml compiler 3/20



Countering trusting trust: diverse double compilation

Diverse Double Compilation (DDC): use an independent compiler
B to check that a deterministic compiler A is free from
trusting-trust attacks.

▶ Compile A with both A and B
=⇒ different binaries, but semantics should be the same.

▶ Compile A with the resulting binaries
=⇒ should get the same output.

Camlboot: debootstrapping the OCaml compiler 4/20



Why debootstrap? (2/4)

License question: is software free if:

▶ you need a proprietary compiler to build it?

▶ you need a proprietary compiler to build its compiler?

▶ there is no way to build it without using binaries at some
point?

Camlboot: debootstrapping the OCaml compiler 5/20



Why debootstrap? (3/4)

Reproducible builds: bit-for-bit identical results for software built
twice in the same environment, allows caching and verification.

▶ Can it be trusted if the environment already contains the
output?

▶ Is research really reproductible if it needs to know the result to
reproduce it?

Camlboot: debootstrapping the OCaml compiler 6/20



Why debootstrap? (4/4)

Semantics question: can we really specify the semantics of a
program when some of it is hidden inside the compiler binary (and
not source)?

let unescape_char c =
match c with
| ’n’ -> ’\n’
| ’t’ -> ’\t’
[...]

Camlboot: debootstrapping the OCaml compiler 7/20



How to debootstrap?

▶ Legacy path: replay compilation using a chain of old
implementations

▶ Tailored path: use new implementations to shorten the chain

Key metric: total human work required

Writing a new implementation can be faster than finding and
making old implementations work (also, much more interesting).

Camlboot: debootstrapping the OCaml compiler 8/20



About debootstrapping

The architecture of Camlboot

Interpreting OCaml

The MiniML language and compiler

Results

Camlboot: debootstrapping the OCaml compiler 8/20



Components of Camlboot

▶ interp: An interpreter for almost all of OCaml, able to run
the OCaml compiler
▶ Written in MiniML, a subset of OCaml
▶ Reuses the OCaml parser and lexer

▶ minicomp: A compiler from MiniML to OCaml bytecode
▶ Written in Scheme
▶ Very näıve

▶ A handwritten lexer to solve the bootstrap of ocamllex

Camlboot: debootstrapping the OCaml compiler 9/20



T-diagrams

T-diagram: graphical depiction of source file, output file, and
compiler

parser.mly

MLY

ocamlyacc

MLY ML

M

ocamlyacc/*.c

C

s: gcc

C M

M

Source files

File format

Input language

Compiler

Output language

M: machine code.
C: C source code.
ML: OCaml source code.
MLY: OCaml parser definition.
red s: bootstrap seeds

Camlboot: debootstrapping the OCaml compiler 10/20



Building OCaml 4.07
o: parser.mly

MLY

ocamlyacc

MLY ML

M

o: ocyacc/*.c

C

s: gcc

C M

M

o: oclex/lexer.mll

MLL
s: boot/ocamllex

MLL ML

B

s: boot/ocamlc

ML B

B

o: lexer.mll

MLL

ocamllex

MLL ML

B

o: oclex/*.ml

ML

s: boot/ocamlc

ML B

B

o: *.ml

ML

ocamlc.byte

ML B

B

ocamlopt.byte

ML M

B

ocamlopt.opt

ML M

M

B

M

o
ca
m
lru

n

o: runtime/*.c

C

s: gcc

C M

M

B: OCaml bytecode
M: machine code
C: C source code
ML: OCaml source code
MLL: OCaml lexer definition
MLY: OCaml parser definition
o: OCaml compiler sources
red s: bootstrap seeds

Camlboot: debootstrapping the OCaml compiler 11/20



Building OCaml with Camlboot

ocamlopt

ML M

ML

ML

M

in
terp

.o
p
t

ocamlopt

ML M

ML

ocamlc.opt

ML B

M

boot/ocamlc

ML B

B

o: parser.mly

MLY

ocamlyacc

MLY ML

M

o: ocyacc/*.c

C

s: gcc

C M

M

Scm

M

s:
G
u
ile

o: oclex/*.ml

mL

c: oclex/boot.ml

mL

c: minicomp

mL B

Scm

o: lexer.mll

MLL

ocamllex

MLL ML

B

o: *.ml

ML

Scm

M

s:
G
u
ile

c: interp/*.ml

mL

c: minicomp

mL B

Scm

ML

B

in
terp

.m
in
ib
yte

B

M

o
ca
m
lru

n

o: runtime/*.c

C

s: gcc

C M

M

B: OCaml bytecode
M: machine code
C: C source code
ML: OCaml source code
mL: MiniML source code
Scm: Scheme source code
MLL: OCaml lexer definition
MLY: OCaml parser definition
o: OCaml compiler sources
red s: bootstrap seeds
blue c: our Camlboot code

Camlboot: debootstrapping the OCaml compiler 12/20



About debootstrapping

The architecture of Camlboot

Interpreting OCaml

The MiniML language and compiler

Results

Camlboot: debootstrapping the OCaml compiler 12/20



Scope of our interpreter

▶ Interprets the untyped syntax tree.

▶ Supports almost all of OCaml.

▶ A few approximations when the semantics depend on typing.

▶ Written in MiniML, ≈ 3000 lines of code, uses the parser from
the OCaml compiler.

Camlboot: debootstrapping the OCaml compiler 13/20



Why use OCaml (MiniML) instead of Scheme?

▶ Reuse the OCaml runtime primitives
=⇒ simplifies the interpreter a lot.

▶ Writing a parser for the full OCaml language is complex
=⇒ reuse the existing parser.

▶ A reference interpreter would be useful to the community.

let prims = [
[...]
("caml_md5_chan",
prim2

Digest.channel
unwrap_in_channel
unwrap_int
wrap_string);

[...]
]

Camlboot: debootstrapping the OCaml compiler 14/20



About debootstrapping

The architecture of Camlboot

Interpreting OCaml

The MiniML language and compiler

Results

Camlboot: debootstrapping the OCaml compiler 14/20



The MiniML language

▶ Compiled to OCaml bytecode (ZINC abstract machine): can
use runtime primitives, closures are easy to compile.

▶ No support for most advanced features.
▶ Deciding whether to support a feature or not:

▶ Is it used in the interpreter?
▶ Is it less work to support it than to remove its use in the

interpreter?

Camlboot: debootstrapping the OCaml compiler 15/20



The minicomp compiler

▶ Two-pass compiler, written in Scheme, ≈ 3300 lines of code

▶ First pass (lowering): pattern matching compilation, labeled
arguments reordering, records and constructors turned into
tagged blocks

▶ Second pass: compilation to bytecode, direct output to file
with backpatching as necessary

Camlboot: debootstrapping the OCaml compiler 16/20



About debootstrapping

The architecture of Camlboot

Interpreting OCaml

The MiniML language and compiler

Results

Camlboot: debootstrapping the OCaml compiler 16/20



DDC for OCaml

▶ We performed diverse double compilation for OCaml 4.07.1.

▶ OCaml 4.07.1 is free of trusting trust attacks!

Camlboot: debootstrapping the OCaml compiler 17/20



Compilation times

▶ First: basic build, interpreted ocamlopt directly compiles
ocamlc

▶ Optimized: compile the interpreter with interpreted
ocamlopt to speed up further steps

▶ Parallel: optimized build, running on 4 cores/8 threads

First Optimized Parallel

ocamlrun 1m

1m 1m

interp.minibyte 2m

2m 2m

interp.opt not built

8h56m 2h02m

stdlib.opt 4h40m

48m 23m

ocamlc.opt 25h40m

4h08m 1h31m

Total 30h23m

13h55m 3h59m

Compilation times are large, but still good enough for
reproducibility.

Camlboot: debootstrapping the OCaml compiler 18/20



Compilation times

▶ First: basic build, interpreted ocamlopt directly compiles
ocamlc

▶ Optimized: compile the interpreter with interpreted
ocamlopt to speed up further steps

▶ Parallel: optimized build, running on 4 cores/8 threads

First Optimized Parallel

ocamlrun 1m 1m

1m

interp.minibyte 2m 2m

2m

interp.opt not built 8h56m

2h02m

stdlib.opt 4h40m 48m

23m

ocamlc.opt 25h40m 4h08m

1h31m

Total 30h23m 13h55m

3h59m

Compilation times are large, but still good enough for
reproducibility.

Camlboot: debootstrapping the OCaml compiler 18/20



Compilation times

▶ First: basic build, interpreted ocamlopt directly compiles
ocamlc

▶ Optimized: compile the interpreter with interpreted
ocamlopt to speed up further steps

▶ Parallel: optimized build, running on 4 cores/8 threads

First Optimized Parallel

ocamlrun 1m 1m 1m
interp.minibyte 2m 2m 2m

interp.opt not built 8h56m 2h02m
stdlib.opt 4h40m 48m 23m
ocamlc.opt 25h40m 4h08m 1h31m

Total 30h23m 13h55m 3h59m

Compilation times are large, but still good enough for
reproducibility.

Camlboot: debootstrapping the OCaml compiler 18/20



Compilation times

▶ First: basic build, interpreted ocamlopt directly compiles
ocamlc

▶ Optimized: compile the interpreter with interpreted
ocamlopt to speed up further steps

▶ Parallel: optimized build, running on 4 cores/8 threads

First Optimized Parallel

ocamlrun 1m 1m 1m
interp.minibyte 2m 2m 2m

interp.opt not built 8h56m 2h02m
stdlib.opt 4h40m 48m 23m
ocamlc.opt 25h40m 4h08m 1h31m

Total 30h23m 13h55m 3h59m

Compilation times are large, but still good enough for
reproducibility.

Camlboot: debootstrapping the OCaml compiler 18/20



Performance analysis

Lots of inefficiencies that stack upon one another, so slowness is
expected. Compilation times for interp:

▶ With ocamlopt.opt: 1.7s

▶ With ocamlopt.byte: 5.8s (3.4x slower)

▶ With ocamlopt interpreted by interp.opt: 2h30mn (1551x
slower)

▶ With ocamlopt interpreted by interp.minibyte: 13h (5.2x
slower)

The cost of interpretation is far superior than the cost of näıve
compilation.

Camlboot: debootstrapping the OCaml compiler 19/20



Performance analysis

Lots of inefficiencies that stack upon one another, so slowness is
expected. Compilation times for interp:

▶ With ocamlopt.opt: 1.7s

▶ With ocamlopt.byte: 5.8s (3.4x slower)

▶ With ocamlopt interpreted by interp.opt: 2h30mn (1551x
slower)

▶ With ocamlopt interpreted by interp.minibyte: 13h (5.2x
slower)

The cost of interpretation is far superior than the cost of näıve
compilation.

Camlboot: debootstrapping the OCaml compiler 19/20



Performance analysis

Lots of inefficiencies that stack upon one another, so slowness is
expected. Compilation times for interp:

▶ With ocamlopt.opt: 1.7s

▶ With ocamlopt.byte: 5.8s (3.4x slower)

▶ With ocamlopt interpreted by interp.opt: 2h30mn (1551x
slower)

▶ With ocamlopt interpreted by interp.minibyte: 13h (5.2x
slower)

The cost of interpretation is far superior than the cost of näıve
compilation.

Camlboot: debootstrapping the OCaml compiler 19/20



Performance analysis

Lots of inefficiencies that stack upon one another, so slowness is
expected. Compilation times for interp:

▶ With ocamlopt.opt: 1.7s

▶ With ocamlopt.byte: 5.8s (3.4x slower)

▶ With ocamlopt interpreted by interp.opt: 2h30mn (1551x
slower)

▶ With ocamlopt interpreted by interp.minibyte: 13h (5.2x
slower)

The cost of interpretation is far superior than the cost of näıve
compilation.

Camlboot: debootstrapping the OCaml compiler 19/20



Performance analysis

Lots of inefficiencies that stack upon one another, so slowness is
expected. Compilation times for interp:

▶ With ocamlopt.opt: 1.7s

▶ With ocamlopt.byte: 5.8s (3.4x slower)

▶ With ocamlopt interpreted by interp.opt: 2h30mn (1551x
slower)

▶ With ocamlopt interpreted by interp.minibyte: 13h (5.2x
slower)

The cost of interpretation is far superior than the cost of näıve
compilation.

Camlboot: debootstrapping the OCaml compiler 19/20



Conclusion and future work

▶ Showed the absence of trusting trust attacks in OCaml 4.07.1.

▶ Takeaways for the design of OCaml: untyped semantics are
good!

▶ Future work: target newer versions of OCaml.

Camlboot: debootstrapping the OCaml compiler 20/20


	About debootstrapping
	The architecture of Camlboot
	Interpreting OCaml
	The MiniML language and compiler
	Results

